Skip to main content
Log in

Adsorption of diatomic gas molecules on transition-metal-decorated GeC monolayers

  • Advanced Nanomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we study the adsorption of O2, N2 and NO molecules on graphene-like germanium carbide monolayers (2DGeC) decorated with transition metal (TM) atoms (Au, Ag and Cu) using density functional calculations. The results show that, in comparison with the pristine 2DGeC, the TM adatoms enhance the adsorption of these molecules, except for N2 on Au-2DGeC and Ag-2DGeC. The largest increment of adsorption energy (EA) for the studied molecules is found for the Cu-adatom case, followed by the Ag and Au ones, in decreasing order of EA. Moreover, the metal-decorated 2DGeC monolayers give electronic charge to the adsorbed molecules, which weakens the molecule bond. In all the TM-decorated 2DGeC, the N2 molecule has the smallest values of EA, in comparison with the other studied molecules. Finally, since NO has the largest EA in comparison with those of O2 and N2 on the TM-decorated 2DGeC, these nanosheets could be used as NO traps to fight air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yang S, Jiang C, Wei S-H (2017) Gas sensing in 2D materials. App Phys Rev 4:021304. https://doi.org/10.1063/1.4983310

    Article  CAS  Google Scholar 

  2. Schwierz F, Pezoldt J, Granzner R (2015) Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7:8261. https://doi.org/10.1039/C5NR01052G

    Article  CAS  Google Scholar 

  3. Rojaee R, Shahbazian-Yassar R (2020) Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano 14:2628–2658. https://doi.org/10.1021/acsnano.9b08396

    Article  CAS  Google Scholar 

  4. Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. Chem Soc Rev 44:3023–3035. https://doi.org/10.1039/C5CS00094G

    Article  CAS  Google Scholar 

  5. Tang X, Du A, Kou L (2018) Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective. WIREs Comput Mol Sci 8:e1361. https://doi.org/10.1002/wcms.1361

    Article  CAS  Google Scholar 

  6. Yu X-f, Li Y-c, Cheng J-b, Liu Z-b, Li Q-z, Li W-z, Yang X, Xiao B (2015) Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7:13707–13713. https://doi.org/10.1021/acsami.5b03737

    Article  CAS  Google Scholar 

  7. Xiao B, Li Y-c, Yu X-f, Cheng J-b (2016) MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens Actuators B Chem 235:103–109. https://doi.org/10.1016/j.snb.2016.05.062

    Article  CAS  Google Scholar 

  8. Ma S, Yuan D, Jiao Z, Wang T, Dai X (2017) Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer. J Phys Chem C 121:24077–24084. https://doi.org/10.1021/acs.jpcc.7b07921

    Article  CAS  Google Scholar 

  9. Jiao Y, Du A, Zhu Z, Rudolph V, Lu GQ, Smith SC (2011) A density functional theory study on CO2 capture and activation by graphene-like boron nitride with boron vacancy. Catal Today 175:271–275. https://doi.org/10.1016/j.cattod.2011.02.043

    Article  CAS  Google Scholar 

  10. Sun Q, Li Z, Searles DJ, Chen Y, Lu G, Du A (2013) Charge-controlled switchable CO2 capture on boron nitride nanomaterials. J Am Chem Soc 135:8246–8253. https://doi.org/10.1021/ja400243r

    Article  CAS  Google Scholar 

  11. Ma D, Ju W, Li T, Zhang X, He C, Ma B, Lu Z, Yang Z (2016) The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl Surf Sci 383:98–105. https://doi.org/10.1016/j.apsusc.2016.04.171

    Article  CAS  Google Scholar 

  12. Marcos-Viquez AL, Miranda A, Cruz-Irisson M, Pérez LA (2021) Gas adsorption enhancement on transition-metal-decorated tin carbide monolayers. Mater Lett 298:130030. https://doi.org/10.1016/j.matlet.2021.130030

    Article  CAS  Google Scholar 

  13. Luo H, Cao Y, Zhou J, Feng J, Cao J, Guo H (2016) Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study. Chem Phys Lett 643:27–33. https://doi.org/10.1016/j.cplett.2015.10.077

    Article  CAS  Google Scholar 

  14. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology 20:185504. https://doi.org/10.1088/0957-4484/20/18/185504

    Article  CAS  Google Scholar 

  15. Mao Y, Long L, Yuan J, Zhong J, Zhao H (2018) Toxic gases molecules (NH3, SO2 and NO2) adsorption on GeSe monolayer with point defects engineering. Chem Phys Lett 706:501–508. https://doi.org/10.1016/j.cplett.2018.06.061

    Article  CAS  Google Scholar 

  16. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. J Phys Chem C 119:16934–16940. https://doi.org/10.1021/acs.jpcc.5b03635

    Article  CAS  Google Scholar 

  17. Marcos-Viquez AL, Miranda A, Cruz-Irisson M, Pérez LA (2021) Tin carbide monolayers as potential gas sensors. Mater Lett 294:129751. https://doi.org/10.1016/j.matlet.2021.129751

    Article  CAS  Google Scholar 

  18. Şahin H et al (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453. https://doi.org/10.1103/PhysRevB.80.155453

    Article  CAS  Google Scholar 

  19. Gökçe AG, Ersan F (2017) Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide. Philos Mag 97:155–167. https://doi.org/10.1080/14786435.2016.1248517

    Article  CAS  Google Scholar 

  20. Lü T-Y, Liao X-X, Wang H-Q, Zheng J-C (2012) Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study. J Mater Chem 22:10062–10068. https://doi.org/10.1039/C2JM30915G

    Article  Google Scholar 

  21. Xu Z, Li Y, Liu Z (2016) Controlling electronic and optical properties of layered SiC and GeC sheets by strain engineering. Mater Des 108:333–342. https://doi.org/10.1016/j.matdes.2016.06.115

    Article  CAS  Google Scholar 

  22. Xu Z, Li Y, Li C, Liu Z (2016) Tunable electronic and optical behaviors of two-dimensional germanium carbide. Appl Surf Sci 367:19–25. https://doi.org/10.1016/j.apsusc.2016.01.136

    Article  CAS  Google Scholar 

  23. Jin H, Dai Y, Huang B-B (2016) Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds. Sci Rep 6:23104. https://doi.org/10.1038/srep23104

    Article  CAS  Google Scholar 

  24. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  26. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  27. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  28. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787e99. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  29. Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J Comput Chem 25:189e210. https://doi.org/10.1002/jcc.10351

    Article  CAS  Google Scholar 

  30. Oprea A, Bârsan N, Weimar U (2009) Work function changes in gas sensitive materials: Fundamentals and applications. Sens Actuators B Chem 142:470–493. https://doi.org/10.1016/j.snb.2009.06.043

    Article  CAS  Google Scholar 

  31. Bertocchi M, Amato M, Marri I, Ossicini S (2017) Tuning the Work Function of Si(100) Surface by Halogen Absorption: A DFT Study. Phys Stat Sol C 14:1700193. https://doi.org/10.1002/pssc.201700193

    Article  CAS  Google Scholar 

  32. Bruno M, Palummo M, Marini A, Del Sole R, Ossicini S (2007) From Si nanowires to porous silicon: The role of excitonic effects. Phys Rev Lett 98:036807. https://doi.org/10.1103/PhysRevLett.98.036807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UNAM-PAPIIT IN109320 and IPN-SIP 2020-2093, 2021-0236. A.L. Marcos-Viquez and L.G. Arellano acknowledge CONACyT and BEIFI-IPN for their scholarships. Computational resources were given through Project LANCAD-UNAM-DGTIC-180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcos-Viquez, A.L., Arellano, L.G., Miranda, Á. et al. Adsorption of diatomic gas molecules on transition-metal-decorated GeC monolayers. J Mater Sci 57, 8455–8463 (2022). https://doi.org/10.1007/s10853-021-06827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06827-9

Navigation