Skip to main content

Advertisement

Log in

Construction of graphitic carbon quantum dots-modified yolk–shell Co3O4 microsphere for high-performance lithium storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The designation of yolk–shell structure is possessing advantages such as more active sites available and hierarchical space for volume expansion in the practical electrochemical applications. However, 3D yolk–shell nanostructures, with overall sizes over 100 nm, are still considered to be a certain degree of difficulty. Herein, we present the synthesis of novel yolk–shell Co3O4 microspheres in situ derived from Co-BTC/ZIF precursor, which is further decorated with graphitic carbon quantum dots coating layer (designated as YS-Co3O4/CQD). As expected, the yolk–shell structure with hollow cavity and interior porosity provides numerous active sites for enhanced electrochemical kinetics and effectively alleviates the volume effect for structural integrity. Moreover, the introduction of CQDs-decorated layer further improved the ionic/electric conductivity and the structural stability of YS-Co3O4 microspheres. Thus, the YS-Co3O4/CQD anode displays a high reversible specific capacity of around 1027 mAh g−1 at 0.1 A g−1, good cyclic stability up to 300 cycles at 1.0 A g−1 and superior rate capacity of 672.7, 550.3, 399.9 and 282.8 mAh g−1 at 4.0, 6.0, 8.0 and 10.0 A g−1, respectively.

Graphical abstract

1. We synthesize Co-BTC/ZIF derivative YS-Co3O4 decorated with CQDs coating.

2. Specific yolk–shell structure endows composite with excellent cycling stability.

3. The CQDs coating layer contributes to fast lithium storage kinetics.

4. YS-Co3O4/CQD exhibits ultrahigh rate capacity and good cyclic stability for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D (2020) Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J Energy Chem 43:220–235

    Article  Google Scholar 

  2. Lei W, Xiaowei W, Qiang LG, Ze LH, Ji L, Xue DS (2018) Novel surface coating strategies for better battery materials. Surf Innov 6:13–18

    Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon J-M (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science 334:928

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19

    Article  Google Scholar 

  6. Kim H, Choi W, Yoon J, Um JH, Lee W, Kim J, Cabana J, Yoon W-S (2020) Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. Chem Rev 120:6934–6976

    Article  CAS  Google Scholar 

  7. Wang R, Cui W, Chu F, Wu F (2020) Lithium metal anodes: Present and future. J Energy Chem 48:145–159

    Article  Google Scholar 

  8. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F (2020) Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem Rev 120:7020–7063

    Article  CAS  Google Scholar 

  9. Yu SH, Lee SH, Lee DJ, Sung YE, Hyeon T (2016) Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small 12:2146–2172

    Article  CAS  Google Scholar 

  10. Fang G, Zhou J, Liang C, Pan A, Zhang C, Tang Y, Tan X, Liu J, Liang S (2016) MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26:57–65

    Article  CAS  Google Scholar 

  11. Wang H, Mao N, Shi J, Wang Q, Yu W, Wang X (2015) Cobalt Oxide-Carbon Nanosheet Nanoarchitecture as an Anode for High-Performance Lithium-Ion Battery. ACS Appl Mater Inter 7:2882–2890

    Article  CAS  Google Scholar 

  12. Li Z, Qian L, Chen J, Zhang W, Tian W, Wan Y, Yang P, Wang Z, Liu Y, Huang W, Sun H (2021) Hydrazine hydrate reduction-induced oxygen vacancy formation in Co3O4 porous nanosheets to optimize the electrochemical lithium storage. J Alloys Compd 861:157994

    Article  CAS  Google Scholar 

  13. Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T (2019) Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A 7:3024–3030

    Article  CAS  Google Scholar 

  14. Kim Y, Noh Y, Han H, Bae J, Park S, Lee S, Yoon W, Kim YK, Ahn H, Ham M-H, Kim WB (2019) Effect of N-doped carbon layer on Co3O4 nanowire-graphene composites as anode materials for lithium ion batteries. J Phys Chem Solids 124:266–273

    Article  CAS  Google Scholar 

  15. Ding R, Liu K, Liu X, Li Z, Wang C, Chen M (2019) Hollow Co3O4 Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage. Inorg Chem 58:3416–3424

    Article  CAS  Google Scholar 

  16. Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-Based Engineering of Carbon-Doped Co3O4 Hollow Nanofibers as Anode Materials for Lithium-Ion Batteries. Adv Funct Mater 26:1428–1436

    Article  CAS  Google Scholar 

  17. Lu Y, Yu L, Lou XW (2018) Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. Chem 4:972–996

    Article  CAS  Google Scholar 

  18. Zhan L, Chen H, Fang J, Wang S, Ding L-X, Li Z, Ashman PJ, Wang H (2016) Coaxial Co3O4@polypyrrole core-shell nanowire arrays for high performance lithium ion batteries. Electrochim Acta 209:192–200

    Article  CAS  Google Scholar 

  19. Zhong M, He W-W, Shuang W, Liu Y-Y, Hu T-L, Bu X-H (2018) Metal-Organic Framework Derived Core-Shell Co/Co3O4@N-C Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorg Chem 57:4620–4628

    Article  CAS  Google Scholar 

  20. Wang S, Teng J, Xie Y, Wei Z-W, Fan Y, Jiang J-J, Wang H-P, Liu H, Wang D, Su C-Y (2019) Embedding CoO nanoparticles in a yolk–shell N-doped porous carbon support for ultrahigh and stable lithium storage. J Mater Chem A 7:4036–4046

    Article  CAS  Google Scholar 

  21. Wu M, Chen H, Lv L-P, Wang Y (2019) Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance. Chem Eng J 373:985–994

    Article  CAS  Google Scholar 

  22. Huang J, Tang X, Li Z, Liu K (2018) Metal organic frameworks derived cobalt sulfide/reduced graphene oxide composites with fast reaction kinetic and excellent structural stability for sodium storage. J Colloid Interf Sci 532:407–415

    Article  CAS  Google Scholar 

  23. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X (2019) Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 65:104038

    Article  CAS  Google Scholar 

  24. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: A review. Mater Today Chem 8:96–109

    Article  CAS  Google Scholar 

  25. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734

    Article  CAS  Google Scholar 

  26. Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:21776–21776

    Article  Google Scholar 

  27. Zhu Y, Li J, Yun X, Zhao G, Ge P, Zou G, Liu Y, Hou H, Ji X (2020) Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Lett 12:16

    Article  CAS  Google Scholar 

  28. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Adv Mater 27:7861–7866

    Article  CAS  Google Scholar 

  29. Liu F, Wang Y, Zhang Y, Lin J, Su Q, Shi J, Xie X, Liang S, Pan A (2020) A Facile Carbon Quantum Dot-Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. Batteries Supercaps 3:463–469

    Article  CAS  Google Scholar 

  30. Guo J, Gao F, Li D, Luo X, Sun Y, Wang X, Ran Z, Wu Q, Li S (2020) Novel Strategy of Constructing Hollow Ga2O3@N-CQDs as a Self-Healing Anode Material for Lithium-Ion Batteries. ACS Sustain Chem Eng 8:13692–13700

    Article  CAS  Google Scholar 

  31. Luo J, Wang J, Liu S, Wu W, Jia T, Yang Z, Mu S, Huang Y (2019) Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146:1–8

    Article  CAS  Google Scholar 

  32. Prasath A, Athika M, Duraisamy E, Sharma AS, Devi VS, Elumalai P (2019) Carbon Quantum Dot-Anchored Bismuth Oxide Composites as Potential Electrode for Lithium-Ion Battery and Supercapacitor Applications. ACS Omega 4:4943–4954

    Article  CAS  Google Scholar 

  33. Mei J, Liao T, Ayoko GA, Bell J, Sun Z (2019) Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog Mater Sci 103:596–677

    Article  CAS  Google Scholar 

  34. Wang Q, Chen M, Zhang J, Yu T, Fu F, Dong Y (2020) Carbon based dots capped tin oxide nanosheets hybridizing with silver nanoparticles for ultra-sensitive surface enhanced raman scattering substrate. Carbon 170:270–276

    Article  CAS  Google Scholar 

  35. Bao Y, Liu P, Zhang J, Wang L, Wang M, Mei H, Zhang Q, Chen C, Xiao Z (2020) Construction of carbon quantum dots embed α-Co/Ni(OH)2 hollow nanocages with enhanced supercapacitor performance. J Am Ceram Soc 103:4342–4351

    Article  CAS  Google Scholar 

  36. Balogun MS, Luo Y, Lyu FY, Wang FX, Yang H, Li HB, Liang CL, Huang M, Huang YC, Tong YX (2016) Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries. ACS Appl Mater Inter 8:9733–9744

    Article  CAS  Google Scholar 

  37. He Z, Huang J, Liu K, Tang X, Dai Y (2019) Fabrication of nanofibrous SiOx/C/CoO composites with fast reaction kinetic and excellent structural stability for lithium storage. J Alloys Compd 811:151971

    Article  CAS  Google Scholar 

  38. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl Mat Interf 5:5002–5008

    Article  CAS  Google Scholar 

  39. Jiang BK, Chen AY, Gu JF, Fan JT, Liu Y, Wang P, Li HJ, Sun H, Yang JH, Wang XY (2020) Corrosion resistance enhancement of magnesium alloy by N-doped graphene quantum dots and polymethyltrimethoxysilane composite coating. Carbon 157:537–548

    Article  CAS  Google Scholar 

  40. Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Liu Y, Kang Z (2015) Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties. Nanoscale 7:5955–5962

    Article  CAS  Google Scholar 

  41. Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel ELG, Ajayan PM, Tour JM (2014) Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano 8:10837–10843

    Article  CAS  Google Scholar 

  42. Fang G, Wu Z, Zhou J, Zhu C, Cao X, Lin T, Chen Y, Wang C, Pan A, Liang S (2018) Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodium-Ion Battery Anode. Adv Energy Mater 8:1703155

    Article  Google Scholar 

  43. Tan Y, Yang C, Qian W, Sui X, Teng C, Li Q, Lu Z (2021) Carbon coated porous Co3O4 polyhedrons as anode materials for highly reversible lithium-ion storage. J Alloys Compd 855.

  44. Wang L, Zhang Z, Wang R, Min Y, Cai J, Sun Z (2021) Coordination-assisted fabrication of N-doped carbon nanofibers/ultrasmall Co3O4 nanoparticles for enhanced lithium storage. J Alloys Compd 855:157502

    Article  CAS  Google Scholar 

  45. Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D (2013) Accurate Control of Multishelled Co3O4 Hollow Microspheres as High-Performance Anode Materials in Lithium-Ion Batteries. Angew Chem Int Ed 52:6417–6420

    Article  CAS  Google Scholar 

  46. Zhang J, Chu R, Chen Y, Jiang H, Zeng Y, Chen X, Zhang Y, Huang NM, Guo H (2019) MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes. J Alloys Compd 797:83–91

    Article  CAS  Google Scholar 

  47. Saikia D, Deka JR, Lin C-W, Lai Y-H, Zeng Y-H, Chen P-H, Kao H-M, Yang Y-C (2020) Insight into the Superior Lithium Storage Properties of Ultrafine CoO Nanoparticles Confined in a 3 D Bimodal Ordered Mesoporous Carbon CMK-9 Anode. Chemsuschem 13:2952–2965

    Article  CAS  Google Scholar 

  48. Khan IA, Nasim F, Choucair M, Ullah S, Badshah A, Nadeem MA (2016) Cobalt oxide nanoparticle embedded N-CNTs: lithium ion battery applications. RSC Adv 6:1129–1135

    Article  CAS  Google Scholar 

  49. Huang J, Tang X, Liu K, Fang G, He Z, Li Z (2020) Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries. Mater Today Energy 17:100475

    Article  Google Scholar 

  50. Liu W, Niu H, Yang J, Cheng K, Ye K, Zhu K, Wang G, Cao D, Yan J (2018) Ternary Transition Metal Sulfides Embedded in Graphene Nanosheets as Both the Anode and Cathode for High-Performance Asymmetric Supercapacitors. Chem Mater 30:1055–1068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774330) and the Fundamental Research Funds for the Central Universities of Central South University (2020zzts735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Huang, J., Liu, K. et al. Construction of graphitic carbon quantum dots-modified yolk–shell Co3O4 microsphere for high-performance lithium storage. J Mater Sci 57, 3586–3600 (2022). https://doi.org/10.1007/s10853-021-06814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06814-0

Navigation