Skip to main content
Log in

Non-linear response under terahertz radiation of an asymmetric Ga1−xAlxAs/GaAs/Ga1−yAlyAs V-groove nanowire confining a singly-ionized double donor

  • Advanced Nanomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The non-linear optical rectification (NOR), the generation of the second (SHG) and third harmonic (THG) of a singly ionized double donor (SIDD) confined in an asymmetric \(\mathrm {Ga_{1-x}Al_xAs/GaAs/ Ga_{1-y}Al_yAs}\) V-groove nanowire are theoretically calculated. The calculated energy levels exhibit a molecular-like behavior with anticrossing points due to V-groove’s pinch-offs. The carefully selected morphological parameters values of the V-groove allowed tuning the optical coefficients within the THz band. The NOR, SHG, and THG were found to be strongly dependent on the donor–donor distance. Larger values of the NOR for the SIDD in comparison to the single electron system were obtained. In contrast, larger values of the SHG and THG coefficients for single electrons can be calculated compared to the SIDD at small donor–donor distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hao R, Chen L, Wu J, Fan D, Wu Y, Liang S (2021) Effects of growth temperature change in quantum well on luminescence performance and optical spectrum. Optik 235:166606. https://doi.org/10.1016/j.ijleo.2021.166606

    Article  CAS  Google Scholar 

  2. Tung L, Lam V, Hoa L, Phuc HV (2021) Nonlinear magneto-optical absorption in a finite semi-parabolic quantum well. Opt Quantum Electron. https://doi.org/10.1007/s11082-021-02817-y

    Article  Google Scholar 

  3. Chatterjee S (2020) Direct band gap silicon nanowire avalanche transit time thz opto-electronic sensor with strain-engineering. Opt Quantum Electr. https://doi.org/10.1007/s11082-020-02563-7

    Article  Google Scholar 

  4. Vasilchenko AA, Kopytov GF (2020) Electronic structure of quantum wire in the strong magnetic field. Russ Phys J 63(4):708–709. https://doi.org/10.1007/s11182-020-02087-3

    Article  Google Scholar 

  5. Pohl UW, Strittmatter A, Schliwa A, Lehmann M, Niermann T, Heindel T, Reitzenstein S, Kantner M, Bandelow U, Koprucki T, Wünsche HJ (2020) Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources, pp. 53–90. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-35656-93

  6. Avazzadeh Z, Bahramiyan H (2020) Simultaneous effects of pressure, temperature, impurity location, soi and magnetic field on thg of a pyramid quantum dot. Opt Quantum Electr. https://doi.org/10.1007/s11082-020-2230-0

    Article  Google Scholar 

  7. Abdellatif M, Lee J (2016) Optical study of nanostructured semiconductor materials: engineering the quantum confinement

  8. Ridene S (2018) Mid-infrared emission in \(\rm In_xGa_{1-x}As/GaAs\) t-shaped quantum wire lasers and its indium composition dependence. Infrared Phys Technol 89:218–222. https://doi.org/10.1016/j.infrared.2018.01.009

    Article  CAS  Google Scholar 

  9. Chaves A, Silva J, Freire J, Degani M, Valder F, Farias G (2007) Influence of graded interfaces on the exciton energy of type-i and type-ii \(\rm Si/Si_{1-x}Ge_x\) quantum wires. J Mater Sci 42:2314–2317. https://doi.org/10.1007/s10853-006-0617-3

    Article  CAS  Google Scholar 

  10. Restrepo Arango R, Miranda G, Duque C (2010) Electronic states in double quantum well-wires with potential w-profile: Combined effects of hydrostatic pressure and electric field. J Mater Sci 45:5045–5053. https://doi.org/10.1007/s10853-010-4334-6

    Article  CAS  Google Scholar 

  11. Gil-Corrales JA, Vinasco JA, Radu A, Restrepo RL, Morales AL, Mora-Ramos ME, Duque CA (2021) Self-consistent schrödinger-poisson study of electronic properties of gaas quantum well wires with various cross-sectional shapes. Nanomaterials. https://doi.org/10.3390/nano11051219

    Article  Google Scholar 

  12. Tribe WR, Steer MJ, Mowbray DJ, Skolnick MS, Forshaw AN, Roberts JS, Hill G, Pate MA, Whitehouse CR, Williams GM (1997) Emission mechanisms and band filling effects in gaas-algaas v-groove quantum wires. Appl Phys Lett 70(8):993–995. https://doi.org/10.1063/1.118459

    Article  CAS  Google Scholar 

  13. Lloyd SJ, P’Ng KMY, Clegg WJ, Bushby AJ, Dunstan DJ (2005) Effect of coherency strain on the deformation of in x ga1-x as superlattices under nanoindentation and bending. Philos Mag 85(22):2469–2490. https://doi.org/10.1080/14786430500070909

    Article  CAS  Google Scholar 

  14. Pelucchi E, Moroni S, Dimastrodonato V, Vvedensky D (2018) Self-ordered nanostructures on patterned substrates. J Mater Sci Mater Electron 29:952–967. https://doi.org/10.1007/s10854-017-7993-0

    Article  CAS  Google Scholar 

  15. Bouazra A, Abdi-Ben Nasrallah S, Said M (2015) Application of coordinate transformation and finite differences method for electron and hole states calculations. Phys E Low Dimens Syst Nanostruct 65:93–99. https://doi.org/10.1016/j.physe.2014.08.011

    Article  CAS  Google Scholar 

  16. Giraldo-Tobón E, Ospina W, Miranda GL, Fulla M (2019) Energy spectrum analysis of a realistic single-electron \(mathrm{Ga_{1?x}Al_xAs/GaAs/Ga_{1?x}Al_xAs}\) quantum v-groove in external electric field. Phys E Low Dimens Syst Nanostruct. https://doi.org/10.1016/j.physe.2019.113652

    Article  Google Scholar 

  17. Giraldo-Tobón E, Miranda GL, Fulla M (2021) Non-linear optical generation in ga1-yalyas/gaas/ga1-xalxas quantum v-grooves: The effects of temperature and hydrostatic pressure. Photon Nanostruct Fundam Appl 45:100919. https://doi.org/10.1016/j.photonics.2021.100919

    Article  Google Scholar 

  18. Felici M, Pettinari G, Carron R, Lavenuta G, Tartaglini E, Polimeni A, Fekete D, Gallo P, Dwir B, Rudra A, Christianen PCM, Maan JC, Capizzi M, Kapon E (2012) Magneto-optical properties of single site-controlled InGaAsN quantum wires grown on prepatterned GaAs substrates. Phys Rev B 85:155319. https://doi.org/10.1103/PhysRevB.85.155319

    Article  CAS  Google Scholar 

  19. Pramjorn N, Amthong A (2020) Donor binding energies in a curved two-dimensional electron system. Appl Surf Sci 508:145195. https://doi.org/10.1016/j.apsusc.2019.145195

    Article  CAS  Google Scholar 

  20. Salazar-Santa JD, Fonnegra-García D, Marín JH (2021) Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. Opt Quantum Electron 53:176. https://doi.org/10.1007/s11082-021-02836-9

    Article  CAS  Google Scholar 

  21. Manjarres-Garcíaa R, Escorcia Salas G, Mikhailov ID, Sierra-Ortega J (2012) Singly ionized double-donor complex in vertically coupled quantum dots. Nanoscale Res Lett 7:489. https://doi.org/10.1186/1556-276X-7-489

    Article  CAS  Google Scholar 

  22. Dwir B, Kaufman D, Berk Y, Rudra A, Palevski A, Kapon E (1999) Electron transport in algaas/gaas v-groove quantum wires. Phys B 259–261:1025–1027. https://doi.org/10.1016/S0921-4526(98)00956-9

    Article  Google Scholar 

  23. Elabsy AM (1994) Effect of the Gamma -X crossover on the binding energies of confined donors in single \(GaAs/Al_xGa_{1-x}As\) quantum-well microstructures. J Phys Condens Matter 6(46):10025–10030. https://doi.org/10.1088/0953-8984/6/46/019

    Article  CAS  Google Scholar 

  24. Reyes-Gómez E, Raigoza N, Oliveira LE (2008) Effects of hydrostatic pressure and aluminum concentration on the conduction-electron \(g\) factor in GaAs-(Ga, Al)As quantum wells under in-plane magnetic fields. Phys Rev B 77:115–308. https://doi.org/10.1103/PhysRevB.77.115308

    Article  CAS  Google Scholar 

  25. Landau LD, Lifshitz EM (1977) Quantum Mechanics: Non-relativistic Theory, 3 edn. Pergamon Press Ltd., Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England

  26. Hecht F (2012) New development in freefem++. J Numer Math 20:251–266. https://doi.org/10.1515/jnum-2012-0013

    Article  Google Scholar 

  27. Boyd R, Prato D (2008) Nonlinear optics. Elsevier Science

  28. Kırak M, Yılmaz S, Şahin M, Gençaslan M (2011) The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot. J Appl Phys 109(9):094309. https://doi.org/10.1063/1.3582137

    Article  CAS  Google Scholar 

  29. Kavruk AE, Sahin M, Atav Ü (2014) A detailed investigation of electronic and intersubband optical properties of \(\rm Al_xGa_{1-x}As/Al_{0.3}Ga_{0.7}As/Al_yGa_{1-y}As/Al_{0.3}Ga_{0.7}As\) multi-shell quantum dots. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/47/29/295302

    Article  Google Scholar 

  30. Ahn D, Chuang S (1987) Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J Quantum Electr 23(12):2196–2204

    Article  Google Scholar 

  31. Levine IN (2000) Quantum Chemistry, 5th ed edn. Prentice Hall

  32. Steer M, Mowbray D, Skolnick M, Tribe W, Forshaw A, Whittaker D, Roberts J, Cullis A, Hill G, Pate M, Whitehouse C (1998) Optical spectroscopy of gaas-algaas v-groove quantum wires. Phys E Low Dimens Syst Nanostruct 2(1):949–953. https://doi.org/10.1016/S1386-9477(98)00194-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Institución Universitaria Pascual Bravo through the research project entitled: “Estructura opto-electrónica de un complejo molecular \(D_2^+\) en un anillo cuántico no-uniforme en presencia de campos eléctrico y magnético ortogonales” with grant number IN202006. MRF thanks to Universidad Nacional de Colombia for the working time within the research project: “Estudio de la respuesta óptica de átomos hidrogenoides en nano-discos semiconductores” with grant number 47063. EGT, JLP, and GLM, thank to Universidad EIA for the working time through the research project entitled: “Propiedades Optoelectrónicas de Sistemas de Pocas Partículas en V-Grooves Cuánticos Semiconductores”, with grant number CO12021001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Giraldo-Tobón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldo-Tobón, E., Palacio, J.L., Miranda, G.L. et al. Non-linear response under terahertz radiation of an asymmetric Ga1−xAlxAs/GaAs/Ga1−yAlyAs V-groove nanowire confining a singly-ionized double donor. J Mater Sci 57, 8406–8416 (2022). https://doi.org/10.1007/s10853-021-06738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06738-9

Navigation