Skip to main content
Log in

Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The LiNi0.6Co0.2Mn0.2O2 (NCM) cathode material is highly potential for the wide application in lithium-ion batteries due to its moderate cost and high specific capacity. However, the problems of its poor cycling stability and rate performance need to be further solved. Designing a single-crystal nanostructure of the NCM materials is an effective strategy to increase the rate characteristics, however, the performance decay and safety issues are still there due to the irreversible side reactions and structure degradation. In this study, the single crystalline hexagonal nanosheets of NCM material have been prepared using a hydrothermal process, and various amounts of Al2O3 are further controllably coated on the surface of NCM. The results show that a suitable amount of Al2O3 coating is conducive to the formation of a better layered structure NCM with smaller cation disorder and leads to higher discharge capacity, rate performance and longer cyclic life than the pristine material, due to the stabilized layered structure of cathode materials, the alleviated electrode/electrolyte side reactions and the favored diffusion of lithium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Or T, Gourley SW, Kaliyappan K, Yu A, Chen Z (2020) Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2:6–43. https://doi.org/10.1002/cey2.29

    Article  CAS  Google Scholar 

  2. Wu G, Zhou Y (2019) TiP2O7-coated LiNi0.8Co0.15Al0.05O2 cathode materials with improved thermal stability and superior cycle life. J Energ Chem 28:151–159. https://doi.org/10.1016/j.jechem.2018.01.018

    Article  Google Scholar 

  3. Li L, Xia L, Yang H, Zhan X, Chen J, Chen Z, Duan J (2020) Solid-state synthesis of lanthanum-based oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries. J Alloys Compd 832:154959. https://doi.org/10.1016/j.jallcom.2020.154959

    Article  CAS  Google Scholar 

  4. Zhong Z, Chen L, Huang S, Shang W, Kong L, Sun M, Chen L, Ren W (2020) Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries. J Mater Sci 55:2913–2922. https://doi.org/10.1007/s10853-019-04133-z

    Article  CAS  Google Scholar 

  5. Xiang W, Liu WY, Zhang J, Wang S, Zhang TT, Yin K, Peng X, Jiang YC, Liu KH, Guo XD (2019) Controlled synthesis of nickel-rich layered oxide cathodes with preferentially exposed {010} active facets for high rate and long cycling stable lithium-ion batteries. J Alloys Compd 775:72–80. https://doi.org/10.1016/j.jallcom.2018.10.057

    Article  CAS  Google Scholar 

  6. Zhu Y, Zhou Y, Tian X et al (2019) Inter-particle electronic and ionic modifications of the ternary Ni-Co-Mn oxide for efficient and stable lithium storage. J Electrochem Soc 166:A3162–A3167. https://doi.org/10.1149/2.0111914jes/meta

    Article  Google Scholar 

  7. Cui X, Ai L, Mao L et al (2019) Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer. Ionics 25:411–419. https://doi.org/10.1007/s11581-018-2725-x

    Article  CAS  Google Scholar 

  8. Fu F, Xu GL, Wang Q et al (2013) Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. J Mater Chem A 1:3860–3864. https://doi.org/10.1039/c3ta01618h

    Article  CAS  Google Scholar 

  9. Chen Y, Zhang Y, Wang F et al (2014) Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J Alloys Compd 611:135–141. https://doi.org/10.1016/j.jallcom.2014.05.068

    Article  CAS  Google Scholar 

  10. Xu X, Huo H, Jian J et al (2019) Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv Energy Mater 9:1–9. https://doi.org/10.1002/aenm.201803963

    Article  CAS  Google Scholar 

  11. Xia L, Qiu K, Gao Y et al (2015) High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Mater Sci 50:2914–2920. https://doi.org/10.1007/S10853-015-8856-9

    Article  CAS  Google Scholar 

  12. Luo W, Li X, Dahn JR (2010) Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3-z(MnMg)z/2]O2. Chem Mater 22:5065–5073. https://doi.org/10.1021/cm1017163

    Article  CAS  Google Scholar 

  13. Zhu Y, Tian X, Zhou X et al (2019) Controlling the oxygen deficiency for improving the insertion performance of the layered LiNi0.6Co0.2Mn0.2O2. Electrochim Acta 328:135116. https://doi.org/10.1016/j.electacta.2019.135116

    Article  CAS  Google Scholar 

  14. Liu W, Oh P, Liu X et al (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chemie - Int Ed 54:4440–4457. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  15. Su Y, Gang C, Lai C et al (2018) Exposing the 010 planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-Rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres. ACS Appl Mater Interfaces 10:6407–6414. https://doi.org/10.1021/acsami.7b18933

    Article  CAS  Google Scholar 

  16. Yan P, Zheng J, Liu J et al (2018) Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 3:600–605. https://doi.org/10.1038/s41560-018-0191-3

    Article  CAS  Google Scholar 

  17. Tian X, Zhu Y, Tang Z, Xie P, Natarajan A, Zhou Y (2019) Ni-rich LiNi0.6Co0.2Mn0.2O2 nanoparticles enwrapped by a 3D graphene aerogel network as a high-performance cathode material for Li-ion batteries. Ceram Int 45:22233–22240. https://doi.org/10.1016/j.ceramint.2019.07.247

    Article  CAS  Google Scholar 

  18. Kondrakov AO, Schmidt A, Xu J et al (2017) Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries. J Phys Chem C 121:3286–3294. https://doi.org/10.1021/acs.jpcc.6b12885

    Article  CAS  Google Scholar 

  19. Kim H, Kim MG, Jeong HY et al (2015) A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 15:2111–2119. https://doi.org/10.1021/acs.nanolett.5b00045

    Article  CAS  Google Scholar 

  20. Li W, Kim U-H, Dolocan A et al (2017) Formation and inhibition of metallic lithium microstructures in lithium batteries driven by chemical crossover. ACS Nano 11:5853–5863. https://doi.org/10.1021/acsnano.7b01494

    Article  CAS  Google Scholar 

  21. Huang X, Zhang P, Liu Z, Ma B, Zhou Y, Tian X (2021) Fluorine doping induced crystal space change and performance improvement of single crystalline LiNi0.6Co0.2Mn0.2O2 layered cathode materials. ChemElectroChem 8:1–7. https://doi.org/10.1002/celc.202100756

    Article  CAS  Google Scholar 

  22. Wang L, Wu B, Mu D et al (2016) Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J Alloys Compd 674:360–367. https://doi.org/10.1016/j.jallcom.2016.03.061

    Article  CAS  Google Scholar 

  23. Zhang F, Lou S, Li S et al (2020) Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-16824-2

    Article  CAS  Google Scholar 

  24. Bao W, Qian G, Zhao L et al (2020) Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Lett 20:8832–8840. https://doi.org/10.1021/acs.nanolett.0c03778

    Article  CAS  Google Scholar 

  25. Li G, You L, Wen Y et al (2021) Ultrathin Li-Si-O coating layer to stabilize the surface structure and prolong the cycling life of single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials at 4.5 V. ACS Appl Mater Interfaces 13:10952–10963. https://doi.org/10.1021/acsami.0c22356

    Article  CAS  Google Scholar 

  26. Lai YQ, Xu M, Zhang ZA et al (2016) Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. J Power Sources 309:20–26. https://doi.org/10.1016/j.jpowsour.2016.01.079

    Article  CAS  Google Scholar 

  27. Tao F, Yan X, Liu J-J et al (2016) Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim Acta 210:548–556. https://doi.org/10.1016/j.electacta.2016.05.060

    Article  CAS  Google Scholar 

  28. Jiang X, Wei Y, Yu X et al (2018) CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: towards the excellent electrochemical performance at normal and high temperature. J Mater Sci Mater Electron 29:15869–15877. https://doi.org/10.1007/S10854-018-9673-0

    Article  CAS  Google Scholar 

  29. Lee S-W, Kim M-S, Jeong JH et al (2017) Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. J Power Sources 360:206–214. https://doi.org/10.1016/j.jpowsour.2017.05.042

    Article  CAS  Google Scholar 

  30. Wang J, Yu Y, Li B et al (2015) Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries. Phys Chem Chem Phys 17:32033–32043. https://doi.org/10.1039/C5CP05319F

    Article  CAS  Google Scholar 

  31. Liu W, Li X, Xiong D et al (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120. https://doi.org/10.1016/j.nanoen.2017.11.010

    Article  CAS  Google Scholar 

  32. Kong JZ, Chen Y, Cao YQ et al (2019) Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating. J Alloys Compd 799:89–98. https://doi.org/10.1016/j.jallcom.2019.05.330

    Article  CAS  Google Scholar 

  33. Zuo D, Wang C, Tian G et al (2019) Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology. J Electrochem Sci Eng 9:85–97. https://doi.org/10.5599/jese.624

    Article  CAS  Google Scholar 

  34. Yang W, Zuo Y, Chen Q, Zhang Y (2019) Synthesis of high-performance LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries by using a four times liquid nitrogen quenching method and an Al2O3 coating method. Materials 12:3666. https://doi.org/10.3390/ma12223666

    Article  CAS  Google Scholar 

  35. Wu F, Wang M, Su Y et al (2010) A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367. https://doi.org/10.1016/j.jpowsour.2009.10.043

    Article  CAS  Google Scholar 

  36. Wang T, Ren K, He M et al (2020) Synthesis and manipulation of single-crystalline lithium nickel manganese cobalt oxide cathodes: a review of growth mechanism. Front Chem 8:1–8. https://doi.org/10.3389/fchem.2020.00747

    Article  CAS  Google Scholar 

  37. Oh S, Lee JK, Byun D et al (2004) Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources 132:249–255. https://doi.org/10.1016/j.jpowsour.2004.01.049

    Article  CAS  Google Scholar 

  38. Lee S-W, Kim H, Kim M-S et al (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268. https://doi.org/10.1016/j.jpowsour.2016.03.020

    Article  CAS  Google Scholar 

  39. Wang J, Du C, Yan C et al (2015) Al2O3 coated concentration-gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries. Electrochim Acta 174:1185–1191. https://doi.org/10.1016/j.electacta.2015.06.112

    Article  CAS  Google Scholar 

  40. Li S, Fu X, Zhou J et al (2016) An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J Mater Chem A 4:5823–5827. https://doi.org/10.1039/C5TA10773C

    Article  CAS  Google Scholar 

  41. Tao L, Li X, Wang Z, Guo H (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503. https://doi.org/10.1016/j.jpowsour.2016.12.095

    Article  CAS  Google Scholar 

  42. Cheng H-M, Wang F-M, Chu JP et al (2012) Enhanced cycleabity in lithium ion batteries: resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J Phys Chem C 116:7629–7637. https://doi.org/10.1021/jp210551r

    Article  CAS  Google Scholar 

  43. Huang B, Qian K, Liu Y et al (2019) Investigations on the surface degradation of LiNi1/3Co1/3Mn1/3O2 after storage. ACS Sustain Chem Eng 7:7378–7385. https://doi.org/10.1021/acssuschemeng.9b00621

    Article  CAS  Google Scholar 

  44. Deng X, Herranz T, Weis C, Bluhm H, Salmeron M (2008) Adsorption of water on Cu2O and Al2O3 thin films. J Phys Chem C 112:9668–9672. https://doi.org/10.1557/proc-318-589

    Article  CAS  Google Scholar 

  45. Granados-Correa F, Bonifacio-Martínez J, Hernández-Mendoza H, Bulbulian S (2016) Capture of CO2 on γ-Al2O3 materials prepared by solution-combustion and ball-milling processes. J Air Waste Manag Assoc 66:643–654. https://doi.org/10.1080/10962247.2016.1161673

    Article  CAS  Google Scholar 

  46. Jung E, Park YJ (2012) Suppression of interface reaction of LiCoO2 thin films by Al2O3-coating. J electroceramics 29:23–28. https://doi.org/10.1007/s10832-012-9732-5

    Article  CAS  Google Scholar 

  47. Xiang J, Chang C, Yuan L, Sun J (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem commun 10:1360–1363. https://doi.org/10.1016/j.elecom.2008.07.012

    Article  CAS  Google Scholar 

  48. Ju SH, Kang I-S, Lee Y-S et al (2014) Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl Mater Interfaces 6:2546–2552. https://doi.org/10.1021/am404965p

    Article  CAS  Google Scholar 

  49. Luo W, Zheng B (2017) Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by double-layer coating with graphene oxide and V2O5 for lithium-ion batteries. Appl Surf Sci 404:310–317. https://doi.org/10.1016/j.apsusc.2017.01.200

    Article  CAS  Google Scholar 

  50. Yang C, Zhang X, Huang M et al (2017) Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries. ACS Appl Mater Interfaces 9:12408–12415. https://doi.org/10.1021/acsami.6b16741

    Article  CAS  Google Scholar 

  51. Shi SJ, Tu JP, Mai YJ et al (2012) Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta 83:105–112. https://doi.org/10.1016/j.electacta.2012.08.029

    Article  CAS  Google Scholar 

  52. Zhang P, Liu Z, Ma B, Li P, Zhou Y, Tian X (2021) Improving the single crystal LiNi0.8Co0.1Mn0.1O2 cathode material performance by fluorine doping. Ceram Int 47:33843–33852. https://doi.org/10.1016/j.ceramint.2021.08.296

    Article  CAS  Google Scholar 

  53. Fu J, Mu D, Wu B et al (2017) Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochim Acta 246:27–34. https://doi.org/10.1016/j.electacta.2017.06.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51902230, 51974209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingke Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Huang, X., Liu, Z. et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries. J Mater Sci 57, 2857–2869 (2022). https://doi.org/10.1007/s10853-021-06726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06726-z

Navigation