Skip to main content

Advertisement

Log in

Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceria-zirconia solid solution (Ce0.5Zr0.5O2)-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO2 reforming of CH4 (DRM). Oxygen storage capacity (OSC) is measured by O2 pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr4+ into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce3+ due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO2 and ZrO2. The solid solution exhibits better conversions of CH4 and CO2, a higher H2/CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce0.5Zr0.5O2 due to the incorporation of Zr4+ and enhanced mobility of O anions, OSC, and reducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sukonket T, Khan A, Saha B et al (2011) Influence of the catalyst preparation method, surfactant amount, and steam on CO2 reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 Catalysts. Energy Fuels 25:864–877. https://doi.org/10.1021/ef101479y

    Article  CAS  Google Scholar 

  2. Li P, Chen X, Li Y, Schwank JW (2019) A review on oxygen storage capacity of CeO2-based materials: influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal Today 327:90–115. https://doi.org/10.1016/j.cattod.2018.05.059

    Article  CAS  Google Scholar 

  3. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl Catal A, Gen 377:16–26. https://doi.org/10.1016/j.apcata.2010.01.013

    Article  CAS  Google Scholar 

  4. Devaiah D, Reddy LH, Park S-E, Reddy BM (2018) Ceria–zirconia mixed oxides: synthetic methods and applications. Catal Rev 60:177–277. https://doi.org/10.1080/01614940.2017.1415058

    Article  CAS  Google Scholar 

  5. Kumari R, Sengupta S (2020) Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni-Co catalysts for the syngas production. Int J Hydrog Energy 45:22775–22787. https://doi.org/10.1016/j.ijhydene.2020.06.150

    Article  CAS  Google Scholar 

  6. Zhang F, Liu Z, Chen X et al (2020) The Effects of Zr-doping into ceria for the dry reforming of methane over Ni /CeZrO2 catalysts: in-situ Studies with XRD, XAFS and AP-XPS. ACS Catal 10:3274–3284. https://doi.org/10.1021/acscatal.9b04451

    Article  CAS  Google Scholar 

  7. Sengupta S, Deo G (2015) Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH4. J CO2 Util 10:67–77. https://doi.org/10.1016/j.jcou.2015.04.003

    Article  CAS  Google Scholar 

  8. Safavinia B, Wang Y, Jiang C et al (2020) Enhancing CexZr1− xO2 activity for methane dry reforming using subsurface Ni dopants. ACS Catal 10:4070–4079. https://doi.org/10.1021/acscatal.0c00203

    Article  CAS  Google Scholar 

  9. Xiang X, Zhao H, Yang J et al (2016) Nickel based mesoporous silica-ceria-zirconia composite for carbon dioxide reforming of methane. Appl Catal A Gen 520:140–150. https://doi.org/10.1016/j.apcata.2016.04.020

    Article  CAS  Google Scholar 

  10. Xu L, Song H, Chou L (2012) Mesoporous nanocrystalline ceria-zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. Int J Hydrog Energy 37:18001–18020. https://doi.org/10.1016/j.ijhydene.2012.09.128

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhang Y, Mu Z et al (2007) Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines. Appl Catal B Environ 76:335–347. https://doi.org/10.1016/j.apcatb.2007.06.011

    Article  CAS  Google Scholar 

  12. Kim JR, Myeong WJ, Ihm SK (2007) Characteristics in oxygen storage capacity of ceria-zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water. Appl Catal B Environ 71:57–63. https://doi.org/10.1016/j.apcatb.2006.08.015

    Article  CAS  Google Scholar 

  13. Lan L, Chen S, Zhao M et al (2014) The effect of synthesis method on the properties and catalytic performance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst. J Mol Catal A Chem 394:10–21. https://doi.org/10.1016/j.molcata.2014.06.032

    Article  CAS  Google Scholar 

  14. Dong XF, Zou HB, Lin WM (2006) Effect of preparation conditions of CuO-CeO2-ZrO2 catalyst on CO removal from hydrogen-rich gas. Int J Hydrog Energy 31:2337–2344. https://doi.org/10.1016/j.ijhydene.2006.03.006

    Article  CAS  Google Scholar 

  15. Li J, Liu X, Zhan W et al (2016) Preparation of high oxygen storage capacity and thermally stable ceria–zirconia solid solution. Catal Sci Technol 6:897–907. https://doi.org/10.1039/C5CY01571E

    Article  CAS  Google Scholar 

  16. Cao JL, Deng QF, Yuan ZY (2009) Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods. J Mater Sci 44:6663–6669. https://doi.org/10.1007/s10853-009-3582-9

    Article  CAS  Google Scholar 

  17. Iglesias I, Baronetti G, Alemany L, Mari F (2018) Insight into Ni/Ce1-x ZrxO2-δ support interplay for enhanced methane steam reforming. Int J Hydrog Energy 44:3668–3680. https://doi.org/10.1016/j.ijhydene.2018.12.112

    Article  CAS  Google Scholar 

  18. Wang HF, Gong XQ, Guo YLYYL et al (2009) A model to understand the oxygen vacancy formation in Zr-doped CeO2: electrostatic interaction and structural relaxation. J Phys Chem C 113:10229–10232. https://doi.org/10.1021/jp900942a

    Article  CAS  Google Scholar 

  19. Chen HT, Chang JG (2010) Oxygen vacancy formation and migration in Ce1-x ZrxO2 catalyst: a DFT+U calculation. J Chem Phys. https://doi.org/10.1063/1.3429314

    Article  Google Scholar 

  20. Wang HF, Li HY, Gong XQ et al (2012) Oxygen vacancy formation in CeO2 and Ce1-xZr xO2 solid solutions: electron localization, electrostatic potential and structural relaxation. Phys Chem Chem Phys 14:16521–16535. https://doi.org/10.1039/c2cp42220d

    Article  CAS  Google Scholar 

  21. Cao X, Zhang C, Wang Z et al (2020) Surface reduction properties of ceria-zirconia solid solutions: a first-principles study. RSC Adv 10:4664–4671. https://doi.org/10.1039/c9ra09550k

    Article  CAS  Google Scholar 

  22. Kim HJ, Jang MG, Shin D, Han JW (2020) Design of ceria catalysts for low-temperature CO oxidation. ChemCatChem 12:11–26. https://doi.org/10.1002/cctc.201901787

    Article  CAS  Google Scholar 

  23. Scanlon DO, Morgan BJ, Watson GW (2011) The origin of the enhanced oxygen storage capacity of Ce1-x(Pd/Pt)xO2. Phys Chem Chem Phys 13:4279–4284. https://doi.org/10.1039/c0cp01635g

    Article  CAS  Google Scholar 

  24. Su YQ, Zhang L, Muravev V, Hensen EJM (2020) Lattice oxygen activation in transition metal doped ceria. Chin J Catal 41:977–984. https://doi.org/10.1016/S1872-2067(19)63468-6

    Article  CAS  Google Scholar 

  25. Yang Z, Woo TK, Hermansson K (2006) Effects of Zr doping on stoichiometric and reduced ceria: a first-principles study. J Chem Phys 124:1–7. https://doi.org/10.1063/1.2200354

    Article  CAS  Google Scholar 

  26. Sun Y, Li C, Djerdj I et al (2019) Oxygen storage capacity versus catalytic activity of ceria-zirconia solid solutions in CO and HCl oxidation. Catal Sci Technol 9:2163–2172. https://doi.org/10.1039/c9cy00222g

    Article  CAS  Google Scholar 

  27. Möller R, Votsmeier M, Onder C et al (2009) Is oxygen storage in three-way catalysts an equilibrium controlled process? Appl Catal B Environ 91:30–38. https://doi.org/10.1016/j.apcatb.2009.05.003

    Article  CAS  Google Scholar 

  28. Verykios XE (2003) Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrog Energy 28:1045–1063. https://doi.org/10.1016/S0360-3199(02)00215-X

    Article  CAS  Google Scholar 

  29. Sengupta S, Ray K, Deo G (2014) Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions. Int J Hydrog Energy 39:11462–11472. https://doi.org/10.1016/j.ijhydene.2014.05.058

    Article  CAS  Google Scholar 

  30. Estephane J, Aouad S, Hany S et al (2015) CO2 reforming of methane over Ni-Co/ZSM5 catalysts. aging and carbon deposition study. Int J Hydrog Energy 40:9201–9208. https://doi.org/10.1016/j.ijhydene.2015.05.147

    Article  CAS  Google Scholar 

  31. Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: Influence of process parameters—a review. Renew Sustain Energy Rev 45:710–744. https://doi.org/10.1016/j.rser.2015.02.026

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  33. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:244–249. https://doi.org/10.1103/PhysRevB.98.079904

    Article  Google Scholar 

  34. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Zeitschrift fur Krist 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  36. Pastor-Pérez L, Le SE, Jones C et al (2018) Synthetic natural gas production from CO 2 over Ni-x/CeO2 -ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity. Catal Today 317:108–113. https://doi.org/10.1016/j.cattod.2017.11.035

    Article  CAS  Google Scholar 

  37. Ay H, Üner D (2015) Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl Catal B Environ 179:128–138. https://doi.org/10.1016/j.apcatb.2015.05.013

    Article  CAS  Google Scholar 

  38. Goula MA, Charisiou ND, Siakavelas G et al (2017) Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2or La2O3catalysts. Int J Hydrog Energy 42:13724–13740. https://doi.org/10.1016/j.ijhydene.2016.11.196

    Article  CAS  Google Scholar 

  39. Pan Q, Peng J, Sun T et al (2014) CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas. Fuel Process Technol 123:166–171. https://doi.org/10.1016/j.fuproc.2014.01.004

    Article  CAS  Google Scholar 

  40. Aw MS, Osojnik Črnivec IG, Djinović P, Pintar A (2014) Strategies to enhance dry reforming of methane: synthesis of ceria-zirconia/nickel-cobalt catalysts by freeze-drying and NO calcination. Int J Hydrog Energy 39:12636–12647. https://doi.org/10.1016/j.ijhydene.2014.06.083

    Article  CAS  Google Scholar 

  41. Wang Z, Qu Z, Quan X, Wang H (2012) Selective catalytic oxidation of ammonia to nitrogen over ceria-zirconia mixed oxides. Appl Catal A Gen 411–412:131–138. https://doi.org/10.1016/j.apcata.2011.10.030

    Article  CAS  Google Scholar 

  42. Roh H, Potdar HS, Jun K et al (2004) Carbon dioxide reforming of methane over Ni incorporated into Ce–ZrO2 catalysts. Appl Catal A, Gen 276:231–239. https://doi.org/10.1016/j.apcata.2004.08.009

    Article  CAS  Google Scholar 

  43. Wolfbeisser A, Sophiphun O, Bernardi J et al (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245. https://doi.org/10.1016/j.cattod.2016.04.025

    Article  CAS  Google Scholar 

  44. Sutradhar N, Sinhamahapatra A, Pahari S et al (2011) Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J Phys Chem C 115:7628–7637. https://doi.org/10.1021/jp200645q

    Article  CAS  Google Scholar 

  45. Pahari SK, Pal P, Sinhamahapatra A et al (2015) Efficient oxidation of hydrocarbons over nanocrystalline Ce1-xSmxO2 (x = 0–0.1) synthesized using supercritical water. RSC Adv 5:45144–45151. https://doi.org/10.1039/c5ra05441a

    Article  CAS  Google Scholar 

  46. Su D, Ford M, Wang G (2012) Mesoporous NiO crystals with dominantly exposed 110 reactive facets for ultrafast lithium storage. Sci Rep 2:1–7. https://doi.org/10.1038/srep00924

    Article  CAS  Google Scholar 

  47. Marinho AL, Rabelo-Neto RC, Epron F, Bion N, Toniolo FS, Noronha FB (2020) Embedded Ni nanoparticles in CeZrO2 as stable catalyst for dry reforming of methane. Appl Catal B Environ 268:118387. https://doi.org/10.1016/j.apcatb.2019.118387

    Article  CAS  Google Scholar 

  48. Fan MS, Abdullah AZ, Bhatia S (2010) Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies. Appl Catal B Environ 100:365–377. https://doi.org/10.1016/j.apcatb.2010.08.013

    Article  CAS  Google Scholar 

  49. Roh H (2002) Highly active and stable Ni/Ce–ZrO2 catalyst for H2 production from methane. J Mol Catal A Chem 181:137–142. https://doi.org/10.1016/S1381-1169(01)00358-2

    Article  CAS  Google Scholar 

  50. Zheng Y, Wei Y, Li K et al (2014) Chemical-looping steam methane reforming over macroporous CeO2-ZrO2 solid solution: Effect of calcination temperature. Int J Hydrog Energy 39:13361–13368. https://doi.org/10.1016/j.ijhydene.2014.04.116

    Article  CAS  Google Scholar 

  51. Aribi K, Soltani Z, Ghelamallah M, Granger P (2018) Structure, morphology and reducibility of ceria-doped zirconia. J Mol Struct 1156:369–376. https://doi.org/10.1016/j.molstruc.2017.11.104

    Article  CAS  Google Scholar 

  52. Montoya JA, Romero-pascual E, Gimon C et al (2000) Methane reforming with CO2 over Ni / ZrO2–CeO2 catalysts prepared by sol—gel. Catal Today 63:71–85

    Article  CAS  Google Scholar 

  53. Eltejaei H, Bozorgzadeh HR, Towfighi J, Omidkhah MR (2011) Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-γ-alumina: Effects of support composition and water addition. Int J Hydrog Energy 37:4107–4118. https://doi.org/10.1016/j.ijhydene.2011.11.128

    Article  CAS  Google Scholar 

  54. Dantas SC, Escritori JC, Soares RR, Hori CE (2010) Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 156:380–387. https://doi.org/10.1016/j.cej.2009.10.047

    Article  CAS  Google Scholar 

  55. Liu J, Zhao Z, Xu C, Liu J (2019) Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis. Chin J Catal 40:1438–1487. https://doi.org/10.1016/S1872-2067(19)63400-5

    Article  CAS  Google Scholar 

  56. Wokaun A, Alxneit I (2015) Correlation between the structural characteristics, oxygen storage capacities and catalytic activities of dual-phase Zn-modified ceria nanocrystals†. Catal Sci Technol 5:3556–3567. https://doi.org/10.1039/c5cy00351b

    Article  Google Scholar 

  57. Hinuma Y, Toyao T, Kamachi T et al (2018) Density functional theory calculations of oxygen vacancy formation and subsequent molecular adsorption on oxide surfaces. J Phys Chem C 122:29435–29444. https://doi.org/10.1021/acs.jpcc.8b11279

    Article  CAS  Google Scholar 

  58. Kumar P, Sun Y, Idem RO (2007) Nickel-based ceria, zirconia, and ceria—zirconia catalytic systems for low-temperature carbon dioxide reforming of methane. Energy Fuels 21:3113–3123. https://doi.org/10.1021/ef7002409

    Article  CAS  Google Scholar 

  59. García-Diéguez M, Herrera C, Larrubia MÁ, Alemany LJ (2012) CO2-reforming of natural gas components over a highly stable and selective NiMg/Al2O3 nanocatalyst. Catal Today 197:50–57. https://doi.org/10.1016/j.cattod.2012.06.019

    Article  CAS  Google Scholar 

  60. Wu Q, Chen J, Zhang J (2008) Effect of yttrium and praseodymium on properties of Ce0.75Zr0.25O2 solid solution for CH4-CO2 reforming. Fuel Process Technol 89:993–999. https://doi.org/10.1016/j.fuproc.2008.03.006

    Article  CAS  Google Scholar 

  61. Makri MM, Vasiliades MA, Petallidou KC, Efstathiou AM (2016) Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5wt% Ni/Ce1-xMxO2-δ (M = Zr4+, Pr3+) catalysts. Catal Today 259:150–164. https://doi.org/10.1016/j.cattod.2015.06.010

    Article  CAS  Google Scholar 

  62. Nguyen TGH, Tran DL, Sakamoto M et al (2018) Ni-loaded ( Ce, Zr )O2-δ -dispersed paper-structured catalyst for dry reforming of methane. Int J Hydrog Energy 43:4951–4960. https://doi.org/10.1016/j.ijhydene.2018.01.118

    Article  CAS  Google Scholar 

  63. Benguerba Y, Virginie M, Dumas C, Ernst B (2017) Methane dry reforming over Ni-Co/Al2O3: kinetic modelling in a catalytic fixed-bed reactor. Int J Chem React Eng. https://doi.org/10.1515/ijcre-2016-0170

    Article  Google Scholar 

  64. Dębek R, Motak M, Galvez ME et al (2017) Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming. Int J Hydrog Energy 42:23556–23567. https://doi.org/10.1016/j.ijhydene.2016.12.121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Central Research Facilities (CRF), IIT (ISM), Dhanbad, India, for different characterizations. A. S. acknowledges the DST-INSPIRE Faculty scheme for Fellowship (Grant No. IFA17-MS107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Apurba Sinhamahapatra or Siddhartha Sengupta.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M., Ray, K., Sinhamahapatra, A. et al. Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE). J Mater Sci 57, 2839–2856 (2022). https://doi.org/10.1007/s10853-021-06720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06720-5

Profiles

  1. Siddhartha Sengupta