Skip to main content
Log in

Mathematical modeling of electron density arrangement in CSDG MOSFET: a nano-material approach

Journal of Materials Science Aims and scope Submit manuscript

Cite this article


The CMOS technology with MOSFETs below 70 nm node for Semiconductor Industry Association roadmap has outstanding resistance to short-channel effect and improves the scalability of the device. Cylindrical surrounding double-gate (CSDG) MOSFETs have been proposed as a suitable CMOS substitute to reduce the area and power tradeoff. This paper presents mathematical modeling of the electron density arrangement in the CSDG MOSFET for hybrid RF applications. In this device, the arbitrary alloy of Aluminum Gallium Arsenide (AlGaAs) has been used. This material lies between Aluminum Arsenide and Gallium Arsenide. High electron mobility and the lesser bandgap in AlGaAs make it suitable for the design of CSDG MOSFET for low-frequency applications. In the middle of CSDG MOSFET, the electron density (N2D) has been observed to be 1.92 × 1013 cm−2 for arbitrary alloy-based MOSFET and 1.02 × 1013 cm−2 for the conventional SiO2-based MOSFET towards the drain terminal. The electron density has been observed to be 7.90 × 1012 cm−2 for arbitrary alloy-based MOSFET and 5.86 × 1012 cm−2 for the conventional SiO2-based MOSFET along the channel. The results show that the average speed of the electron inside the device channel is submissive to the conventional MOSFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. Del Alamo JA, Antoniadis DA, Lin J, Wenjie Lu, Vardi A, Zhao X (2016) Nanometer-scale III-V MOSFETs. IEEE J Electron Devices Soc 4(5):205–214

    Article  Google Scholar 

  2. Fleetwood DM (2018) Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling. IEEE Trans Nucl Sci 65(8):1465–1481

    Article  CAS  Google Scholar 

  3. International Technology Roadmap for Semiconductors,

  4. RK Keinigs et al. (2001) Material science experiments at the Atlas facility. In: 28th IEEE international conference on plasma science and 13th IEEE international pulsed power conference, 17–22 June 2001, pp. 366–385

  5. Uchechukwu MA, Srivastava VM (2020) Channel length scaling pattern for cylindrical surrounding double-gate (CSDG) MOSFET. IEEE Access 8:121204–121210

    Article  Google Scholar 

  6. Colinge JP (2008) FinFETs, and other multi-gate transistors. Springer, New York

    Book  Google Scholar 

  7. P Schygulla, F Heinz, D Lackner, F Dimroth (2020) Subcell development for wafer-bonded III-V//Si tandem solar cells. In: 47th IEEE Photovoltaic Specialists Conf., Calgary, Canada, 15 June–21 Aug. 2020, pp. 2716–2719

  8. Wu C, Huang R, Huang Q, Wang C, Wang J, Wang Y (2014) An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs. IEEE Trans on Electron Devices 61(8):2690–2696

    Article  Google Scholar 

  9. Sen D, Goswami B, Dey A, Saha P, Sarkar SK (2020) Impact of self-heating and nano-gap filling factor on AlGaAs/GaAs junction-less DG-MOSFET based biosensor for early-stage diagnostics. In: IEEE region 10 symposium, Dhaka, Bangladesh, 5–7 June 2020 pp. 662–665

  10. Villa J, Ramiro I, Ripalda JM, Tobías I, Garcia Linares P, Antolin E, Marti A (2021) Contribution to the study of sub-bandgap photon absorption in quantum dot InAs/AlGaAs intermediate band solar cells. IEEE J Photovolt 11(2):420–428

    Article  Google Scholar 

  11. Allaei M, Shalchian M, Jazaeri F (2020) Modeling of short-channel effects in GaN HEMTs. IEEE Trans Electron Devices 67(8):3088–3094

    Article  CAS  Google Scholar 

  12. Liu X, Shur MS (2020) TCAD model for TeraFET detectors operating in a large dynamic range. IEEE Trans Terahertz Sci Technol 10(1):15–20

    Article  CAS  Google Scholar 

  13. Kumar V, Roy DR (2018) Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J Mater Sci 53:8302–8313

    Article  CAS  Google Scholar 

  14. Shang ZW, Qian Xu, He GY, Zheng ZW, Cheng CH (2021) Effect of plasma oxidation on the tin-oxide active layer for thin-film transistor applications. J Mater Sci 56:6286–6291

    Article  CAS  Google Scholar 

  15. Yang YF, Ren P, Bao ZB, Zhu SL, Wang FH, Li W (2020) Microstructure and cyclic oxidation of a Hf-doped (Ni, Pt)Al coating for single-crystal superalloys. J Mater Sci 55:11687–11700

    Article  CAS  Google Scholar 

  16. Kahraman A, Deevi SC, Yilmaz E (2020) Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices. J Mater Sci 55:7999–8040

    Article  CAS  Google Scholar 

  17. Yonghong Chen Lu, Wang LL, Tang L, Yuan Xi, Chen H, Zhou K, Zhang D (2021) Thickness-dependent ferroelectric properties of HfO2/ZrO2 nanolaminates using atomic layer deposition. J Mater Sci 56:6064–6072

    Article  Google Scholar 

  18. Lin Z, Li X, Zeng Y, You M, Wang F, Liu J (2020) The electronics transport mechanism of grain and grain boundary in semiconductive hafnium oxynitride thin film. J Mater Sci 55:2881–2890

    Article  CAS  Google Scholar 

  19. Nie X, Ma D, Ma F, Kewei Xu (2017) Thermal stability, structural and electrical characteristics of the modulated HfO2/Al2O3 films fabricated by atomic layer deposition. J Mater Sci 52:11524–11536

    Article  CAS  Google Scholar 

  20. Kuankuan Lu, Yao R, Wang Y, Ning H, Guo D, Liu X, Tao R, Miao Xu, Wang L, Peng J (2019) Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor. J Mater Sci 54:14778–14786

    Article  Google Scholar 

  21. Jones KA, Chow TP, Wraback M, Shatalov M, Sitar Z, Shahedipour F, Udwary K, Tompa GS (2015) AlGaN devices and growth of device structures. J Mater Sci 50:3267–3307

    Article  CAS  Google Scholar 

  22. Walther T, Amari H, Ross IM, Wang T, Cullis AG (2013) Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision. J Mater Sci 48:2883–2892

    Article  CAS  Google Scholar 

  23. Dargar SK, Srivastava VM (2020) Design of double-gate tri-active layer channel based IGZO thin-film transistor for improved performance of ultra-low-power RFID rectifier. IEEE Access 8:194652–194662

    Article  Google Scholar 

  24. Firsov DA, Makhov IS, Panevin VY, Vinnichenko MY, Vorobjev LE, Vasil'ev AP, Maleev NA (2018) Enhance of impurity related terahertz emission in optically pumped GaAs/AlGaAs quantum well structures. In: 43rd International conference on infrared, millimeter, and terahertz waves (IRMMW-THz), Nagoya 9–14 Sep 2018 pp. 1–2

  25. Stark D, Persichetti L, Montanari M, Ciano C, Di Gaspare L, De Seta M, Zoellner M, Skibitzki O, Capellini G, Ortolani M, Baldassarre L, Virgilio M, Grange T, Birner S, Rew K, Paul DJ, Faist J, Scalar G (2019) N-Type Ge/SiGe quantum cascade heterostructures for THz emission. In: Conference on lasers and electro-optics Europe & European quantum electronics conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June pp. 1–1

  26. Dewan MI, Kashem MTB, Subrina S (2016) Characteristic analysis of triple material tri-gate junction-less tunnel field-effect transistor. In: 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 Dec 2016 pp. 333–336

  27. Srivastava VM, Singh G (2013) MOSFET technologies for double-pole four throw radio frequency switch. Springer International Publishing, Berlin

    Google Scholar 

  28. Gowthaman N, Srivastava VM (2021) Analysis of n-type double-gate MOSFET (at nanometer scale) using high-k dielectrics for high-speed applications. In: 44th International Spring seminar on electronics technology, advancements in microelectronics packaging for harsh environment, Bautzen, Germany, 6–7 May 2021 pp. 130-131

  29. da Nobrega RVT, Fonseca YM , Costa RA, Duarte UR (2018) Comparative study on the performance of silicon and III-V nanowire gate-all-around field-effect transistors for different gate oxides. In: XIII Workshop on Semiconductors and Micro and Nano Technology, Sao Bernardo do Campo, Brazil, 19-20 April 2018 pp. 9-10

  30. Sharma S, Rewari S, Nath V, Deswal SS, Gupta RS (2020) Schottky barrier double surrounding gate MOSFET for high-frequency implementation. In: 5th IEEE International conference on recent advances and innovations in engineering (ICRAIE), Jaipur, India, 1–3 Dec 2020 pp. 1–4

  31. Gowthaman N, Srivastava VM (2021) Capacitive modeling of cylindrical surrounding double-gate MOSFETs for hybrid RF applications. IEEE Access 9:89234–89242

    Article  Google Scholar 

  32. Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New York

    Book  Google Scholar 

  33. Luisier M, Klimeck G (2010) Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J Appl Phys 107(8):84507

    Article  Google Scholar 

  34. Guan Y, Li Z, Zhang W, Zhang Y (2017) An accurate analytical current model of double-gate heterojunction tunneling FET. IEEE Trans on Electron Devices 64(3):938–944

    Article  CAS  Google Scholar 

  35. Fahad HM, Hussain MM (2013) High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans on Electron Devices 60(3):1034–1039

    Article  CAS  Google Scholar 

  36. Oh SH et al (2000) Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett 21(9):445–447

    Article  Google Scholar 

  37. Verma JHK et. Al (2014) RF performance analysis and small-signal parameter extraction of cylindrical surrounding double gate MOSFETs for sub-millimeter wave applications. In: 2nd International conference on devices, circuits and systems (ICDCS), Coimbatore, India, pp. 1–5

  38. Gowthaman N, VM Srivastava (2021) Arbitrary alloy semiconductor material based DG MOSFET for high-frequency industrial and hybrid consumer applications. In: 14th IEEE International conference on AFRICON, Arusha, Tanzania, 13–15 Sept 2021, pp. 583–587

  39. Passlack M (2006) Off-state current limits of narrow bandgap MOSFETs. IEEE Trans Electron Devices 53(11):2773–2778

    Article  CAS  Google Scholar 

  40. Gong Z, Chang H, Wang S, Li Y, Sun B, Liu H (2016) Simulation study of enhancement-mode n-type InGaAs MOSFETs with a low zero bias off-current. IEEE International nanoelectronics conference (INEC), Chengdu, China, 9-11 May 2016 pp. 1-2

  41. Lin J, Antoniadis DA, Del Alamo JA (2015) Physics and mitigation of excess OFF-state current in InGaAs quantum-well MOSFETs. IEEE Trans Electron Devices 62(5):1448–1455

    Article  CAS  Google Scholar 

Download references


No funding involved.

Author information

Authors and Affiliations



Naveenbalaji Gowthaman (GNB) and Viranjay M. Srivastava (VMS) conducted this research; GNB designed and analyzed the model with data and wrote this article; VMS has verified the result with the designed model; all authors had approved the final version.

Corresponding author

Correspondence to Naveenbalaji Gowthaman.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthaman, N., Srivastava, V.M. Mathematical modeling of electron density arrangement in CSDG MOSFET: a nano-material approach. J Mater Sci 57, 8381–8392 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: