Skip to main content
Log in

Toward the design of robust multilayer graphene: mechanistic understanding of the role played by interlayer interactions

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the literature, while the mechanical responses of multilayer graphene have been investigated during uniaxial tensile stretch and nanoindentation tests, fundamental mechanisms for the effects of the number of layers (non-bonded interlayer interactions) are rarely explored and discussed. In this work, a series of molecular dynamics simulations was performed to bridge this gap. Our results revealed that for graphene samples under tensile stretch, stress–strain relations and Young’s moduli were insensitive to both the interlayer interactions and the number of graphene layers. Contrarily, during nanoindentation tests, layer thicknesses as well as interlayer interactions, play significant roles in determining the force–displacement curves, and thus Young’s moduli of multilayer graphene. Through analyzing strain distributions, the underlying mechanisms for these observations were proposed. While interlayer interactions have insignificant effects on the distribution of normal strains, they can initiate “strain shielding” for the distribution of shear strains. Hybrids of graphene/boron nitride sheets were then built as demonstrations to further validate these findings. The results obtained here not only provide fundamental insights into the role of interlayer interactions, but also shed lights on the design of mechanically robust multilayer graphene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nieto A, Bisht A, Lahiri D et al (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62:241–302. https://doi.org/10.1080/09506608.2016.1219481

    Article  CAS  Google Scholar 

  2. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. https://doi.org/10.1016/j.jiec.2014.03.022

    Article  CAS  Google Scholar 

  3. Patil SP (2019) Nanoindentation of graphene-reinforced silica aerogel: a molecular dynamics study. Molecules 24:1336–1348. https://doi.org/10.3390/molecules24071336

    Article  CAS  Google Scholar 

  4. Moeini M, Barbaz Isfahani R, Saber-Samandari S, Aghdam MM (2020) Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol Simul 46:476–486. https://doi.org/10.1080/08927022.2020.1729983

    Article  CAS  Google Scholar 

  5. Najafi F, Wang G, Mukherjee S et al (2020) Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization. Compos Sci Technol 194:108140. https://doi.org/10.1016/j.compscitech.2020.108140

    Article  CAS  Google Scholar 

  6. Li M, Zhou H, Zhang Y et al (2017) The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv 7:46101–46108. https://doi.org/10.1039/c7ra08243f

    Article  CAS  Google Scholar 

  7. Li J, Zhao J, Ren P et al (2019) Effects of temperature, strain rate and molecule length on the deformation of graphene/polyethylene composites: A molecular dynamics simulation. Chem Phys Lett 726:39–45. https://doi.org/10.1016/j.cplett.2019.04.037

    Article  CAS  Google Scholar 

  8. Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Des 31:4646–4654. https://doi.org/10.1016/j.matdes.2010.05.036

    Article  CAS  Google Scholar 

  9. Zhong T, Li J, Zhang K (2019) A molecular dynamics study of Young’s modulus of multilayer graphene. J Appl Phys 125:175110. https://doi.org/10.1063/1.5091753

    Article  CAS  Google Scholar 

  10. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  11. Dewapriya MAN, Srikantha Phani A, Rajapakse RKND (2013) Influence of temperature and free edges on the mechanical properties of graphene. Model Simul Mater Sci Eng 21:065017. https://doi.org/10.1088/0965-0393/21/6/065017

    Article  CAS  Google Scholar 

  12. Hosseini Kordkheili SA, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69:335–343. https://doi.org/10.1016/j.commatsci.2012.11.027

    Article  CAS  Google Scholar 

  13. Zhang YY, Gu YT (2013) Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput Mater Sci 71:197–200. https://doi.org/10.1016/j.commatsci.2013.01.032

    Article  CAS  Google Scholar 

  14. Fan N, Ren Z, Jing G et al (2017) Numerical investigation of the fracture mechanism of defective graphene sheets. Materials (Basel) 10:164–176. https://doi.org/10.3390/ma10020164

    Article  CAS  Google Scholar 

  15. Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5. https://doi.org/10.1016/j.diamond.2012.01.033

    Article  CAS  Google Scholar 

  16. Neek-Amal M, Peeters FM (2010) Nanoindentation of a circular sheet of bilayer graphene. Phys Rev B: Condens Matter Mater Phys 81:1–6. https://doi.org/10.1103/PhysRevB.81.235421

    Article  CAS  Google Scholar 

  17. Falin A, Cai Q, Santos EJG et al (2017) Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8:1–9. https://doi.org/10.1038/ncomms15815

    Article  Google Scholar 

  18. Muniz AR, Machado AS, Maroudas D (2015) Mechanical behavior of interlayer-bonded nanostructures obtained from bilayer graphene. Carbon N Y 81:663–677. https://doi.org/10.1016/j.carbon.2014.10.003

    Article  CAS  Google Scholar 

  19. Zhang YY, Wang CM, Cheng Y, Xiang Y (2011) Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon N Y 49:4511–4517. https://doi.org/10.1016/j.carbon.2011.06.058

    Article  CAS  Google Scholar 

  20. Machado AS, Maroudas D, Muniz AR (2013) Tunable mechanical properties of diamond superlattices generated by interlayer bonding in twisted bilayer graphene. Appl Phys Lett 103:013113. https://doi.org/10.1063/1.4813271

    Article  CAS  Google Scholar 

  21. Kumar S, Parks DM (2015) Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure. Nano Lett 15:1503–1510. https://doi.org/10.1021/nl503641c

    Article  CAS  Google Scholar 

  22. Li Y, Zhang W, Guo B, Datta D (2017) Interlayer shear of nanomaterials: Graphene–graphene, boron nitride–boron nitride and graphene–boron nitride. Acta Mech Solida Sin 30:234–240. https://doi.org/10.1016/j.camss.2017.05.002

    Article  Google Scholar 

  23. Hosseini E, Zakertabrizi M, Habibnejad Korayem A, Shahsavari R (2019) Tunable, multifunctional ceramic composites via intercalation of fused graphene boron nitride nanosheets. ACS Appl Mater Interfaces 11:8635–8644. https://doi.org/10.1021/acsami.8b19409

    Article  CAS  Google Scholar 

  24. Ding N, Chen X, Wu CML (2016) Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Sci Rep 6:1–9. https://doi.org/10.1038/srep31499

    Article  CAS  Google Scholar 

  25. Borodich FM, Galanov BA (2016) Contact probing of stretched membranes and adhesive interactions: graphene and other two-dimensional materials. Proc R Soc A Math Phys Eng Sci 472:20160550. https://doi.org/10.1098/rspa.2016.0550

    Article  Google Scholar 

  26. Niu T, Cao G, Xiong C (2018) Indentation behavior of the stiffest membrane mounted on a very compliant substrate: graphene on PDMS. Int J Solids Struct 132–133:1–8. https://doi.org/10.1016/j.ijsolstr.2017.05.038

    Article  CAS  Google Scholar 

  27. Cao C, Daly M, Singh CV et al (2015) High strength measurement of monolayer graphene oxide. Carbon N Y 81:497–504. https://doi.org/10.1016/j.carbon.2014.09.082

    Article  CAS  Google Scholar 

  28. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486. https://doi.org/10.1063/1.481208

    Article  CAS  Google Scholar 

  29. Wang X, Ramírez-Hinestrosa S, Dobnikar J, Frenkel D (2020) The Lennard-Jones potential: when (not) to use it. Phys Chem Chem Phys 22:10624–10633. https://doi.org/10.1039/c9cp05445f

    Article  CAS  Google Scholar 

  30. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568. https://doi.org/10.1103/PhysRevB.39.5566

    Article  CAS  Google Scholar 

  31. Lee JH (2006) A study on a boron-nitride nanotube as a gigahertz oscillator. J Korean Phys Soc 49:172–176

    CAS  Google Scholar 

  32. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  Google Scholar 

  33. Fan Y, Cao P (2019) Long time-scale atomistic modeling and simulation of deformation and flow in solids. In: Handbook of materials modeling. Springer International Publishing, Cham, pp 1–27

  34. Hoover GW (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  35. Hoover WG (1986) Constant-pressure equations of motion. Phys Rev A 34:2499–2500. https://doi.org/10.1103/PhysRevA.34.2499

    Article  CAS  Google Scholar 

  36. Kryuchkov NP, Yurchenko SO, Fomin YD et al (2018) Complex crystalline structures in a two-dimensional core-softened system. Soft Matter 14:2152–2162. https://doi.org/10.1039/c7sm02429k

    Article  CAS  Google Scholar 

  37. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  38. Tan X, Wu J, Zhang K et al (2013) Nanoindentation models and Young’s modulus of monolayer graphene: a molecular dynamics study. Appl Phys Lett 102:071908. https://doi.org/10.1063/1.4793191

    Article  CAS  Google Scholar 

  39. Jin C (2017) Comment on “Nanoindentation models and Young’s modulus of monolayer graphene: a molecular dynamics study.” Appl Phys Lett 110:176101. https://doi.org/10.1063/1.4982226

    Article  CAS  Google Scholar 

  40. Begley MR, Mackin TJ (2004) Spherical indentation of freestanding circular thin films in the membrane regime. J Mech Phys Solids 52:2005–2023. https://doi.org/10.1016/j.jmps.2004.03.002

    Article  CAS  Google Scholar 

  41. Liu A, Peng Q (2018) A molecular dynamics study of the mechanical properties of twisted bilayer graphene. Micromachines 9:1–11. https://doi.org/10.3390/mi9090440

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge computing resources and technical support from Compute Canada. Financial support from York University and the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiying Jian.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monji, F., Desai, D. & Jian, C. Toward the design of robust multilayer graphene: mechanistic understanding of the role played by interlayer interactions. J Mater Sci 57, 2514–2527 (2022). https://doi.org/10.1007/s10853-021-06656-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06656-w