Skip to main content

Advertisement

Log in

Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Regulating the immune microenvironment around the central neurons is a difficult problem. To address this critical matter, drug-loading scaffolds are promising ways of releasing drugs directly to the surrounding cells and ignoring the influence of blood–brain barrier and blood–medullary barrier. Microglia are fundamental innate immune sentinels in the central nervous system, usually activated during neuroinflammation. Citicoline (CDPC), a neuroprotective agent on secondary injuries, is used in clinical treatment of central nervous system diseases. To overcome low efficiency of CDPC uptake and improve immune microenvironment of CDPC in central nervous system (CNS), in this work, double local drug delivery systems, hybrid CDPC–liposome and CDPC blending directly waterborne polyurethane scaffolds, were prepared. It shows that CDPC–liposome composite scaffolds are more conducive to inhibit the inflammatory response of microglia and promote axon elongation, which presents a certain prospect in the field of nerve repair.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rankin LC, Artis D (2018) Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173(3):554–567. https://doi.org/10.1016/j.cell.2018.03.013

    Article  CAS  Google Scholar 

  2. Wei W, Zhang Q, Zhou W, Liu Z, Wang Y, Alakpa EV, Ouyang H, Liu H (2019) Immunomodulatory application of engineered hydrogels in regenerative medicine. Appl Mater Today 14:126–136. https://doi.org/10.1016/j.apmt.2018.11.013

    Article  Google Scholar 

  3. Chen S, Jones JA, Xu Y, Low H-Y, Anderson JM, Leong KW (2010) Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31(13):3479–3491. https://doi.org/10.1016/j.biomaterials.2010.01.074

    Article  CAS  Google Scholar 

  4. Zhang D, Chen Q, Shi C, Chen M, Ma K, Wan J, Liu R (2021) Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv Func Mater 31(6):2007226. https://doi.org/10.1002/adfm.202007226

    Article  CAS  Google Scholar 

  5. Guo G, Gong T, Shen H, Wang Q, Jiang F, Tang J, Jiang X, Wang J, Zhang X, Bu W (2021) Self-Amplification immunomodulatory strategy for tissue regeneration in diabetes based on cytokine-zifs system. Adv Func Mater 31:2100795. https://doi.org/10.1002/adfm.202100795

    Article  CAS  Google Scholar 

  6. Nishiguchi A, Taguchi T (2021) Oligoethyleneimine-Conjugated hyaluronic acid modulates inflammatory responses and enhances therapeutic efficacy for ulcerative colitis. Adv Func Mater 31:2100548. https://doi.org/10.1002/adfm.202100548

    Article  CAS  Google Scholar 

  7. Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K (2021) The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.04.052

    Article  Google Scholar 

  8. Toita R, Shimizu E, Kang J-H (2020) Unique cellular interaction of macrophage-targeted liposomes potentiates anti-inflammatory activity. Chem Commun 56(59):8253–8256. https://doi.org/10.1039/D0CC03320K

    Article  CAS  Google Scholar 

  9. Yang HC, Park HC, Quan H, Kim Y (2018) Immunomodulation of Biomaterials by Controlling Macrophage Polarization. In: Noh I (ed) Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting. Springer, Singapore, pp 197–206. https://doi.org/10.1007/978-981-13-0445-3_12

    Chapter  Google Scholar 

  10. Hurtley SM (2020) Microglia take control. Science 367(6477):522. https://doi.org/10.1126/science.367.6477.522-a

    Article  Google Scholar 

  11. Han J, Harris RA, Zhang XM (2017) An updated assessment of microglia depletion: current concepts and future directions. Mol Brain 10(1):25. https://doi.org/10.1186/s13041-017-0307-x

    Article  CAS  Google Scholar 

  12. Cameron EG, Goldberg JL (2016) Promoting CNS repair. Science 353(6294):30–31. https://doi.org/10.1126/science.aag3327

    Article  CAS  Google Scholar 

  13. Dellacherie MO, Seo BR, Mooney DJ (2019) Macroscale biomaterials strategies for local immunomodulation. Nat Rev Mater 4(6):379–397. https://doi.org/10.1038/s41578-019-0106-3

    Article  Google Scholar 

  14. Adu-Berchie K, Mooney DJ (2020) Biomaterials as local niches for immunomodulation. Acc Chem Res 53(9):1749–1760. https://doi.org/10.1021/acs.accounts.0c00341

    Article  CAS  Google Scholar 

  15. Vishwakarma A, Bhise NS, Evangelista MB, Rouwkema J, Dokmeci MR, Ghaemmaghami AM, Vrana NE, Khademhosseini A (2016) Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol 34(6):470–482. https://doi.org/10.1016/j.tibtech.2016.03.009

    Article  CAS  Google Scholar 

  16. Liu Y, Segura T (2020) Biomaterials-Mediated regulation of macrophage cell fate. Front Bioeng Biotechnol 8:1428. https://doi.org/10.3389/fbioe.2020.609297

    Article  Google Scholar 

  17. Rajesh Krishnan G, Cheah C, Sarkar D (2015) Hybrid cross-linking characteristics of hydrogel control stem cell fate. Macromol Biosci 15(6):747–755. https://doi.org/10.1002/mabi.201400535

    Article  CAS  Google Scholar 

  18. Ventre M, Netti PA (2016) Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces 8(24):14896–14908. https://doi.org/10.1021/acsami.5b08658

    Article  CAS  Google Scholar 

  19. Li J, Jiang X, Li H, Gelinsky M, Gu Z (2021) Tailoring materials for modulation of macrophage fate. Adv Mater 33(12):2004172. https://doi.org/10.1002/adma.202004172

    Article  CAS  Google Scholar 

  20. Marklein RA, Burdick JA (2010) Controlling stem cell fate with material design. Adv Mater 22(2):175–189. https://doi.org/10.1002/adma.200901055

    Article  CAS  Google Scholar 

  21. He Q, Yuan S, Tang H, Wang S, Mu Z, Li D, Wang S, Jing X, Hu S, Ji P, Chen T (2021) Safeguarding osteointegration in diabetic patients: a potent, “Chain Armor” coating for scavenging ros and macrophage reprogramming in a microenvironment-responsive manner. Adv Func Mater 31:2101611. https://doi.org/10.1002/adfm.202101611

    Article  CAS  Google Scholar 

  22. Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R (2021) Control of innate immune response by biomaterial surface topography, energy, and stiffness☆. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.04.021

    Article  Google Scholar 

  23. Zhou H, Xue Y, Dong L, Wang C (2021) Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 9(17):3608–3621. https://doi.org/10.1039/D1TB00107H

    Article  CAS  Google Scholar 

  24. Du B, Yin H, Chen Y, Lin W, Wang Y, Zhao D, Wang G, He X, Li J, Li Z, Luo F, Tan H, Fu Q (2020) A waterborne polyurethane 3D scaffold containing PLGA with a controllable degradation rate and an anti-inflammatory effect for potential applications in neural tissue repair. J Mater Chem B 8(20):4434–4446. https://doi.org/10.1039/D0TB00656D

    Article  CAS  Google Scholar 

  25. Kondyurin A, Lau K, Tang F, Akhavan B, Chrzanowski W, Lord MS, Rnjak-Kovacina J, Bilek MM (2018) Plasma ion implantation of silk biomaterials enabling direct covalent immobilization of bioactive agents for enhanced cellular responses. ACS Appl Mater Interfaces 10(21):17605–17616. https://doi.org/10.1021/acsami.8b03182

    Article  CAS  Google Scholar 

  26. Sadowska JM, Ginebra M-P (2020) Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 8(41):9404–9427. https://doi.org/10.1039/D0TB01379J

    Article  CAS  Google Scholar 

  27. Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H (2019) Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthcare Mater 8(4):1801106. https://doi.org/10.1002/adhm.201801106

    Article  CAS  Google Scholar 

  28. Sun X, Zhang C, Xu J, Zhai H, Liu S, Xu Y, Hu Y, Long H, Bai Y, Quan D (2020) Neurotrophin-3-Loaded multichannel nanofibrous scaffolds promoted anti-inflammation, neuronal differentiation, and functional recovery after spinal cord injury. ACS Biomater Sci Eng 6(2):1228–1238. https://doi.org/10.1021/acsbiomaterials.0c00023

    Article  CAS  Google Scholar 

  29. Sun T, Kwong CHT, Gao C, Wei J, Yue L, Zhang J, Ye RD, Wang R (2020) Amelioration of ulcerative colitis inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics 10(22):10106–10119. https://doi.org/10.7150/thno.48448

    Article  CAS  Google Scholar 

  30. Chvatal SA, Kim YT, Bratt-Leal AM, Lee H, Bellamkonda RV (2008) Spatial distribution and acute anti-inflammatory effects of Methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29(12):1967–1975. https://doi.org/10.1016/j.biomaterials.2008.01.002

    Article  CAS  Google Scholar 

  31. Grieb P (2014) Neuroprotective properties of citicoline: facts, doubts and unresolved issues. CNS Drugs 28(3):185–193. https://doi.org/10.1007/s40263-014-0144-8

    Article  CAS  Google Scholar 

  32. Liu H, Jablonska A, Li Y, Cao S, Liu D, Chen H, Van Zijl PCM, Bulte JWM, Janowski M, Walczak P, Liu G (2016) Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics 6(10):1588–1600. https://doi.org/10.7150/thno.15492

    Article  CAS  Google Scholar 

  33. Hatcher JF, Dempsey RJ (2002) Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem 80(1):12–23. https://doi.org/10.1046/j.0022-3042.2001.00697.x

    Article  Google Scholar 

  34. Grieb P (2015) Beneficial effects of exogenous CDP-choline (citicoline) in EAE. Brain 138(11):e388. https://doi.org/10.1093/brain/awv140

    Article  Google Scholar 

  35. Roberti G, Tanga L, Michelessi M, Quaranta L, Parisi V, Manni G, Oddone F (2015) Cytidine 5′-Diphosphocholine (Citicoline) in Glaucoma: rationale of its use, current evidence and future perspectives. Int J Mole Sci 16(12):28401–28417. https://doi.org/10.3390/ijms161226099

    Article  CAS  Google Scholar 

  36. Dávalos A, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Ferro J, Martínez-Vila E, Serena J, Segura T, Cruz VT, Masjuan J, Cobo E, Secades JJ (2012) Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). The Lancet 380(9839):349–357. https://doi.org/10.1016/S0140-6736(12)60813-7

    Article  CAS  Google Scholar 

  37. Shultz R, Zhong Y (2021) Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regen Res 16(2):247–253. https://doi.org/10.4103/1673-5374.290882

    Article  Google Scholar 

  38. Ziemba AM, Gilbert RJ (2017) Biomaterials for local, controlled drug delivery to the injured spinal cord. Front Pharmacol 8:245. https://doi.org/10.3389/fphar.2017.00245

    Article  CAS  Google Scholar 

  39. Chen YC, Gad SF, Chobisa D, Li Y, Yeo Y (2021) Local drug delivery systems for inflammatory diseases: status quo, challenges, and opportunities. J Control Release 330:438–460. https://doi.org/10.1016/j.jconrel.2020.12.025

    Article  CAS  Google Scholar 

  40. Yang C, Blum NT, Lin J, Qu J, Huang P (2020) Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Sci Bullet 65(17):1489–1504. https://doi.org/10.1016/j.scib.2020.04.012

    Article  CAS  Google Scholar 

  41. Aguado BA, Hartfield RM, Bushnell GG, Decker JT, Azarin SM, Nanavati D, Schipma MJ, Rao SS, Oakes RS, Zhang Y, Jeruss JS, Shea LD (2018) Biomaterial scaffolds as pre-metastatic niche mimics systemically alter the primary tumor and tumor microenvironment. Adv Healthcare Mater. https://doi.org/10.1002/adhm.201700903

    Article  Google Scholar 

  42. Chen JC, Li LM, Gao JQ (2019) Biomaterials for local drug delivery in central nervous system. Int J Pharm 560:92–100. https://doi.org/10.1016/j.ijpharm.2019.01.071

    Article  CAS  Google Scholar 

  43. Chaichana KL, Pinheiro L, Brem H (2015) Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 6(3):353–369. https://doi.org/10.4155/tde.14.114

    Article  CAS  Google Scholar 

  44. Niemczyk B, Sajkiewicz P, Kolbuk D (2018) Injectable hydrogels as novel materials for central nervous system regeneration. J Neural Eng 15(5):051002. https://doi.org/10.1088/1741-2552/aacbab

    Article  CAS  Google Scholar 

  45. Chen Y, Long X, Lin W, Du B, Yin H, Lan W, Zhao D, Li Z, Li J, Luo F, Tan H (2021) Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B 9(2):322–335. https://doi.org/10.1039/d0tb02347g

    Article  CAS  Google Scholar 

  46. Song YQ, Gao YL, Pan ZC, Zhang Y, Li JH, Wang KJ, Li JS, Tan H, Fu Q (2016) Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. Chin J Polym Sci 34(6):679–687. https://doi.org/10.1007/s10118-016-1787-3

    Article  CAS  Google Scholar 

  47. Song NJ, Jiang X, Li JH, Pang Y, Li JS, Tan H, Fu Q (2013) The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chin J Polym Sci 31(10):1451–1462. https://doi.org/10.1007/s10118-013-1315-7

    Article  CAS  Google Scholar 

  48. Yin H, Du B, Chen Y, Song N, Li Z, Li J, Luo F, Tan H (2020) Dual-encapsulated biodegradable 3D scaffold from liposome and waterborne polyurethane for local drug control release in breast cancer therapy. J Biomater Sci Polym Ed 31(17):2220–2237. https://doi.org/10.1080/09205063.2020.1796230

    Article  CAS  Google Scholar 

  49. Zahednezhad F, Saadat M, Valizadeh H, Zakeri-Milani P, Baradaran B (2019) Liposome and immune system interplay: challenges and potentials. J Control Release 305:194–209. https://doi.org/10.1016/j.jconrel.2019.05.030

    Article  CAS  Google Scholar 

  50. Li Y, Cong H, Wang S, Yu B, Shen Y (2020) Liposomes modified with bio-substances for cancer treatment. Biomater Sci 8(23):6442–6468. https://doi.org/10.1039/D0BM01531H

    Article  CAS  Google Scholar 

  51. Xing H, Hwang K, Lu Y (2016) Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6(9):1336–1352. https://doi.org/10.7150/thno.15464

    Article  CAS  Google Scholar 

  52. Jasielski P, Piędel F, Piwek M, Rocka A, Petit V, Rejdak K (2020) Application of citicoline in neurological disorders: a systematic review. Nutrients. https://doi.org/10.3390/nu12103113

    Article  Google Scholar 

  53. Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurosci Res 73(3):308–315. https://doi.org/10.1002/jnr.10672

    Article  CAS  Google Scholar 

  54. Lan X, Han X, Li Q, Yang Q-W, Wang J (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 13(7):420–433. https://doi.org/10.1038/nrneurol.2017.69

    Article  CAS  Google Scholar 

  55. Hailer NP (2008) Immunosuppression after traumatic or ischemic CNS damage: It is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 84(3):211–233. https://doi.org/10.1016/j.pneurobio.2007.12.001

    Article  CAS  Google Scholar 

  56. Ryu J-K, Kim SJ, Rah S-H, Kang JI, Jung HE, Lee D, Lee HK, Lee J-O, Park BS, Yoon T-Y, Kim HM (2017) Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46(1):38–50. https://doi.org/10.1016/j.immuni.2016.11.007

    Article  CAS  Google Scholar 

  57. Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J (2021) The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: switching signaling to degeneration. Free Radical Biol Med 162:500–513. https://doi.org/10.1016/j.freeradbiomed.2020.11.005

    Article  CAS  Google Scholar 

  58. Kuropteva ZV, Baider LM, Nagler LG, Bogatyrenko TN, Belaia OL (2019) l-Arginine and nitric oxide synthesis in the cells with inducible NO synthase. Russ Chem Bull 68(1):174–180. https://doi.org/10.1007/s11172-019-2434-2

    Article  CAS  Google Scholar 

  59. Tyrtyshnaia AA, Lysenko LV, Madamba F, Manzhulo IV, Khotimchenko MY, Kleschevnikov AM (2016) Acute neuroinflammation provokes intracellular acidification in mouse hippocampus. J Neuroinflammation 13(1):283. https://doi.org/10.1186/s12974-016-0747-8

    Article  CAS  Google Scholar 

  60. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91. https://doi.org/10.1016/S0166-2236(96)10072-2

    Article  CAS  Google Scholar 

  61. McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof TC (1996) Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci 93(10):4760–4764. https://doi.org/10.1073/pnas.93.10.4760

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China Key Program Grants 51733005, 51873122 and 52003177. We are also grateful to Doctor Chenghui Li (Analytical & Center, Sichuan University) for her help in taking laser scanning confocal images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueling He or Jiehua Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Song, X., Yin, H. et al. Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration. J Mater Sci 57, 2073–2088 (2022). https://doi.org/10.1007/s10853-021-06628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06628-0