Abstract
In this study coatings of kaolin and talc particles were successfully applied on the surface of polyamide 12 powder intended for laser sintering (LS). Microscopic observations revealed that using carboxymethyl cellulose (CMC) as surface modifier for fillers led to a better coverage of polymer grains with a surface coverage between 6 and 16% as a function of filler type and content. Differential scanning calorimetry measurements showed that the addition of talc and kaolin led to an increase in the crystallization temperature of PA12, but at the expense of processability. Process parameters were optimized in order to manufacture LS samples with the different coated powders. Fire behavior assessed by cone calorimetry showed that the use of CMC resulted in a significant decrease in the peak of heat release rate depending on the filler type and content. This behavior can be partially explained by an interaction between CMC, fillers and polymer, with the formation of amide linkage between carboxyl part of CMC and amine end groups of polyamide, resulting in an increase in the complex viscosity of materials.
This is a preview of subscription content,
to check access.










References
Cano AJ, Salazar A, Rodríguez J (2018) Effect of temperature on the fracture behavior of polyamide 12 and glass-filled polyamide 12 processed by selective laser sintering. Eng Fract Mech 203:66–80. https://doi.org/10.1016/j.engfracmech.2018.07.035
Hon KKB, Gill TJ (2003) Selective laser sintering of SiC/polyamide composites. CIRP Ann Manuf Technol 52:173–176. https://doi.org/10.1016/S0007-8506(07)60558-7
Mazzoli A, Moriconi G, Pauri MG (2007) Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater Des 28:993–1000. https://doi.org/10.1016/j.matdes.2005.11.021
Feng P, Niu M, Gao C, et al (2014) A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep 4
Tan LJ, Zhu W, Zhou K (2020) Development of organically modified montmorillonite/polypropylene composite powders for selective laser sintering. Powder Technol 369:25–37. https://doi.org/10.1016/j.powtec.2020.05.005
Chunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A nanosilica/nylon-12 composite powder for selective laser sintering. J Reinf Plast Compos 28:2889–2902. https://doi.org/10.1177/0731684408094062
Dadbakhsh S, Verbelen L, Vandeputte T et al (2016) Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys Procedia 83:971–980. https://doi.org/10.1016/j.phpro.2016.08.102
Borille AV, De Oliveira GJ, Lopes D (2017) Geometrical analysis and tensile behaviour of parts manufactured with flame retardant polymers by additive manufacturing. Rapid Prototyp J 23:169–180. https://doi.org/10.1108/RPJ-09-2015-0130
Majewski C, Zarringhalam H, Hopkinson N (2008) Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc Inst Mech Eng Part B J Eng Manuf 222:1055–1064. https://doi.org/10.1243/09544054JEM1122
Yuan S, Zheng Y, Chua CK et al (2018) Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos A Appl Sci Manuf 105:203–213. https://doi.org/10.1016/j.compositesa.2017.11.007
Ippolito F, Hübner G, Claypole T, Gane P (2021) Calcium carbonate as functional filler in polyamide 12-manipulation of the thermal and mechanical properties. Processes 9. https://doi.org/10.3390/pr9060937
Ippolito F, Hübner G, Claypole T, Gane P (2020) Influence of the surface modification of calcium carbonate on polyamide 12 composites. Polymers (Basel) 12. https://doi.org/10.3390/polym12061295
Ippolito F, Hübner G, Claypole T, Gane P (2021) Impact of bimodal particle size distribution ratio of functional calcium carbonate filler on thermal and flowability properties of polyamide 12. Appl Sci 11:1–13. https://doi.org/10.3390/app11020641
Ippolito F, Rentsch S, Hübner G et al (2019) Influence of calcium carbonate on polyamide 12 regarding melting, formability and crystallization properties. Compos Part B Eng 164:158–167. https://doi.org/10.1016/j.compositesb.2018.11.079
Schmidt J, Sachs M, Fanselow S et al (2016) Optimized polybutylene terephthalate powders for selective laser beam melting. Chem Eng Sci 156:1–10. https://doi.org/10.1016/j.ces.2016.09.009
Koo JH, Pilato L, Wissler G, et al (2005) Innovative selective laster sintering rapid manufacturing using nanotechnology. 16th Solid Free Fabr Symp SFF 2005 11:98–108
Espera AH, Valino AD, Palaganas JO et al (2019) 3D printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity. Macromol Mater Eng 304:1–8. https://doi.org/10.1002/mame.201800718
Batistella M, Regazzi A, Pucci MF et al (2020) Selective laser sintering of polyamide 12/flame retardant compositions. Polym Degrad Stab 181:109318. https://doi.org/10.1016/j.polymdegradstab.2020.109318
Zhu W, Yan C, Shi Y, et al (2016) A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci. Rep. 6
Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Funct Mater 30:1–54. https://doi.org/10.1002/adfm.202003062
Yuan S, Bai J, Chua CK et al (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos Part A Appl Sci Manuf 90:699–710. https://doi.org/10.1016/j.compositesa.2016.09.002
Chen B, Berretta S, Evans K et al (2018) A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering. Appl Surf Sci 428:1018–1028. https://doi.org/10.1016/j.apsusc.2017.09.226
Gan X, Wang J, Wang Z et al (2019) Simultaneous realization of conductive segregation network microstructure and minimal surface porous macrostructure by SLS 3D printing. Mater Des 178:107874. https://doi.org/10.1016/j.matdes.2019.107874
Frost RL (1997) Kaolinite hydroxyls-a raman microscopy study. Clay Miner 32:471–484. https://doi.org/10.1180/claymin.1997.032.3.09
Olabanji SO, Ige AO, Mazzoli C et al (2005) Quantitative elemental analysis of an industrial mineral talc, using accelerator-based analytical technique. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 240:327–332. https://doi.org/10.1016/j.nimb.2005.06.159
Batistella M, Otazaghine B, Sonnier R et al (2016) Fire retardancy of polypropylene/kaolinite composites. Polym Degrad Stab 129:260–267. https://doi.org/10.1016/j.polymdegradstab.2016.05.003
Almeras X, Le Bras M, Hornsby P et al (2003) Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab 82:325–331. https://doi.org/10.1016/S0141-3910(03)00187-3
Clerc L, Ferry L, Leroy E, Lopez-Cuesta J-MM (2005) Influence of talc physical properties on the fire retarding behaviour of (ethylene–vinyl acetate copolymer/magnesium hydroxide/talc) composites. Polym Degrad Stab 88:504–511. https://doi.org/10.1016/j.polymdegradstab.2004.12.010
Ansari DM, Price GJ (2004) Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies. Polymer (Guildf) 45:3663–3670. https://doi.org/10.1016/j.polymer.2004.03.045
Batistella MA, Sonnier R, Otazaghine B et al (2018) Interactions between kaolinite and phosphinate-based flame retardant in Polyamide 6. Appl Clay Sci 157:248–256. https://doi.org/10.1016/j.clay.2018.02.021
Batistella M, Caro-Bretelle ASS, Otazaghine B et al (2015) The influence of dispersion and distribution of ultrafine kaolinite in polyamide-6 on the mechanical properties and fire retardancy. Appl Clay Sci 116–117:8–15. https://doi.org/10.1016/j.clay.2015.07.034
Qin H, Su Q, Zhang S et al (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer (Guildf) 44:7533–7538. https://doi.org/10.1016/j.polymer.2003.09.014
Vahabi H, Batistella MAA, Otazaghine B et al (2012) Influence of a treated kaolinite on the thermal degradation and flame retardancy of poly(methyl methacrylate). Appl Clay Sci 70:58–66. https://doi.org/10.1016/j.clay.2012.09.013
Marney DCO, Russell LJ, Wu DY et al (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93:1971–1978
Dahiya JBB, Muller-Hagedorn M, Bockhorn H, Kandola BKK (2008) Synthesis and thermal behaviour of polyamide 6/bentonite/ammonium polyphosphate composites. Polym Degrad Stab 93:2038–2041. https://doi.org/10.1016/j.polymdegradstab.2008.02.016
Jang B, Wilkie C (2005) The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer (Guildf) 46:3264–3274. https://doi.org/10.1016/j.polymer.2005.02.078
Lao SCC, Wu C, Moon TJJ et al (2009) Flame-retardant polyamide 11 and 12 nanocomposites: Thermal and flammability properties. J Compos Mater 43:1803–1818. https://doi.org/10.1177/0021998309338413
Lopez-Cuesta J, Laoutid F (2009) Multicomponent FR Systems. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2nd edn. CRC Press, Boca Raton, pp 301–328
Domka L, Malickaa A, Stachowiakc N et al (2008) The effect of kaolin modification of silane coupling agents on the properties of the polyethylene composites. Polish J Chem Technol 10:5–10. https://doi.org/10.2478/v10026-008-0020-8
Buggy M, Bradley G, Sullivan A (2005) Polymer–filler interactions in kaolin/nylon 6,6 composites containing a silane coupling agent. Compos A Appl Sci Manuf 36:437–442. https://doi.org/10.1016/j.compositesa.2004.10.002
Domka L, Malicka A, Stachowiak N (2010) The effect of kaolin modification of silane coupling agents on the properties of the polyethylene composites, pp 5–10
Brady PVP, Cygan RTR, Nagy KL (1996) Molecular controls on kaolinite surface charge. J Colloid Interface Sci 183:356–364
Wegner A, Witt G (2015) Understanding the decisive thermal processes in laser sintering of polyamide 12. AIP Conf Proc 1664:1–6. https://doi.org/10.1063/1.4918511
Drummer D, Wudy K, Drexler M (2014) Influence of energy input on degradation behavior of plastic components manufactured by selective laser melting. Phys Procedia 56:176–183. https://doi.org/10.1016/j.phpro.2014.08.160
Drummer D, Drexler M, Wudy K (2015) Density of laser molten polymer parts as function of powder coating process during additive manufacturing. Procedia Eng 102:1908–1917. https://doi.org/10.1016/j.proeng.2015.01.331
Mailhos-Lefievre V, Sallet D, Martel B et al (1989) Thermal degradation of pure and flame-retarded polyamides 11 and 12. Polym Degrad Stab 23:327–336. https://doi.org/10.1016/0141-3910(89)90055-4
Regazzi A, Pucci MF, Dumazert L et al (2019) Controlling the distribution of fire retardants in poly(lactic acid) by fused filament fabrication in order to improve its fire behaviour. Polym Degrad Stab 163:143–150. https://doi.org/10.1016/j.polymdegradstab.2019.03.008
Kashiwagi T, Mu M, Winey K et al (2008) Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer (Guildf) 49:4358–4368. https://doi.org/10.1016/j.polymer.2008.07.054
Bigg DM (1982) Rheological analysis of highly loaded polymeric composites filled with non-agglomerating spherical filler particles. Polym Eng Sci 22:512–518. https://doi.org/10.1002/pen.760220810
Han CD, Van Den Weghe T, Shete P, Haw JR (1981) Effects of coupling agents on the rheological properties, processability, and mechanical properties of filled polypropylene. Polym Eng Sci 21:196–204. https://doi.org/10.1002/pen.760210404
Bai J, Goodridge RD, Yuan S et al (2015) Thermal Influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules 20:19041–19050. https://doi.org/10.3390/molecules201019041
Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR-FTIR studies of CMC adsorption on talc: the effect of ionic strength and multivalent metal ions. Miner Eng 21:1013–1019. https://doi.org/10.1016/j.mineng.2008.03.007
Roy S, Das T, Zhang L et al (2015) Triggering compatibility and dispersion by selective plasma functionalized carbon nanotubes to fabricate tough and enhanced Nylon 12 composites. Polymer (Guildf) 58:153–161. https://doi.org/10.1016/j.polymer.2014.12.032
Rafiq R, Cai D, Jin J, Song M (2010) Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon N Y 48:4309–4314. https://doi.org/10.1016/j.carbon.2010.07.043
Marzbani P, Resalati H, Ghasemian A, Shakeri A (2016) Surface modification of talc particles with phthalimide: study of composite structure and consequences on physical, mechanical, and optical properties of deinked pulp. BioResources 11. https://doi.org/10.15376/biores.11.4.8720-8738
Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1:2559–2564. https://doi.org/10.1039/a809238i
Chowdhury R, Banerji MS, Shivakumar K (2006) Development of acrylonitrile-butadiene (NBR)/polyamide thermoplastic elastomeric compositions: effect of carboxylation in the NBR phase. J Appl Polym Sci 100:1008–1012. https://doi.org/10.1002/app.22876
Gerstner P, Paltakari J, Gane PAC (2009) A lumped parameter model for thermal conductivity of paper coatings. Transp Porous Media 78:1–9. https://doi.org/10.1007/s11242-008-9276-y
Tolochko NK, Khlopkov YV, Mozzharov SE et al (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6:155–161. https://doi.org/10.1108/13552540010337029
Laumer T, Stichel T, Nagulin K, Schmidt M (2016) Optical analysis of polymer powder materials for Selective Laser Sintering. Polym Test 56:207–213. https://doi.org/10.1016/j.polymertesting.2016.10.010
Acknowledgements
The authors would like to thank the European Union (FEDER funding for the Occitanie region), the Occitanie region for funding the POLIFRIL project.
Funding
This study was funded by European Union (FEDER funding for the Occitanie region – POLIFRIL Project).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Gregory Rutledge.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Batistella, M., Kadri, O., Regazzi, A. et al. Laser sintering of coated polyamide 12: a new way to improve flammability. J Mater Sci 57, 739–754 (2022). https://doi.org/10.1007/s10853-021-06621-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-021-06621-7