Skip to main content

Advertisement

Log in

Intense pulsed UV light treatment to design functional optical films from perhydropolysilazane: an alternative to conventional heat treatment processes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perhydropolysilazane (PHPS) forms a thin layer by solution processing and converts to dense glass-like silica (SiOx) with excellent chemical resistance, adhesion, and optical properties. However, heat treatment methods for the conversion of PHPS into SiOx are not sufficient for its application to functional polymer films. In this study, our group developed an alternative process using irradiation by intense pulsed UV light (IPL) at low temperatures in an air environment. We prepared PHPS-derived SiOx layers using various exposure energies (4.2, 8.4, and 12.6 J cm−2) and then examined their chemical behaviors, compositions, conversion rates, and refractive indices. The resulting SiOx layer exhibited a 100% conversion rate similar to that of a heat-treated silica layer (600 °C) and a refractive index (RI) value identical to that of amorphous SiO2 (1.45). Moreover, the final SiOx thin layer (160 nm ± 0.7 nm) on a polyethylene terephthalate (PET) film had a transmittance of 90.7% and a pencil hardness of 4H at a load of 750 g. The mean hardness and elastic modulus for the SiOx layer were 3.25 GPa, and 27.98 GPa, respectively, values similar to those of SiOx layers formed by roll-to-roll vacuum deposition. Furthermore, the final SiOx thin layer exhibited no cracks after 100 K bending cycles. Overall, we established that the IPL process is effective for converting PHPS into SiOx layers on flexible polymer films that have good hardness, elastic modulus, and transparency. It can be applied in large-scale roll-to-roll manufacturing processes to generate functional materials for the optical film industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Tóvári E, Csontos M, Kriváchy T et al (2014) Characterization of SiO2/SiNx gate insulators for graphene based nanoelectromechanical systems. Appl Phys Lett 105:18–22. https://doi.org/10.1063/1.4896515

    Article  CAS  Google Scholar 

  2. Jacobson NS, Opila EJ, Lee KN (2001) Oxidation and corrosion of ceramics and ceramic matrix composites. Curr Opin Solid State Mater Sci 5:301–309. https://doi.org/10.1016/S1359-0286(01)00009-2

    Article  CAS  Google Scholar 

  3. Roberts AP, Henry BM, Sutton AP et al (2002) Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects. J Memb Sci 208:75–88. https://doi.org/10.1016/S0376-7388(02)00178-3

    Article  CAS  Google Scholar 

  4. Noda T, Suzuki H, Araki H et al (1993) Microstructure and growth of SiC film by excimer laser chemical vapour deposition at low temperatures. J Mater Sci 28:2763–2768. https://doi.org/10.1007/BF00356215

    Article  CAS  Google Scholar 

  5. Howells DG, Henry BM, Madocks J, Assender HE (2008) High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films. Thin Solid Films 516:3081–3088. https://doi.org/10.1016/j.tsf.2007.11.017

    Article  CAS  Google Scholar 

  6. Henry BM, Roberts AP, Grovenor CRM, et al (1998) Microstructural characterization of transparent silicon oxide permeation barrier coatings on PET. In: Proceedings, annual technical conference - society of vacuum coaters. pp 434–439

  7. Leplan H, Robic JY, Pauleau Y (1996) Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air. J Appl Phys 79:6926–6931. https://doi.org/10.1063/1.361517

    Article  CAS  Google Scholar 

  8. Koutsonikolas DE, Kaldis SP, Pantoleontos GT (2017) Preparation of Silica Membranes by Atomic Layer Deposition. Elsevier B.V.

  9. Kim J, Jang JH, Kim JH et al (2020) Inorganic encapsulation method using solution-processible polysilazane for flexible solar cells. ACS Appl Energy Mater 3:9257–9263. https://doi.org/10.1021/acsaem.0c01593

    Article  CAS  Google Scholar 

  10. Morlier A, Cros S, Garandet JP, Alberola N (2013) Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation. Sol Energy Mater Sol Cells 115:93–99. https://doi.org/10.1016/j.solmat.2013.03.033

    Article  CAS  Google Scholar 

  11. Morlier A, Cros S, Garandet JP, Alberola N (2014) Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates. Thin Solid Films 550:85–89. https://doi.org/10.1016/j.tsf.2013.10.140

    Article  CAS  Google Scholar 

  12. Ohishi T (2003) Gas barrier characteristics of a polysilazane film formed on an ITO-coated PET substrate. J Non Cryst Solids 330:248–251. https://doi.org/10.1016/j.jnoncrysol.2003.09.022

    Article  CAS  Google Scholar 

  13. Seul HJ, Kim HG, Park MY, Jeong JK (2016) A solution-processed silicon oxide gate dielectric prepared at a low temperature via ultraviolet irradiation for metal oxide transistors. J Mater Chem C 4:10486–10493. https://doi.org/10.1039/c6tc03725a

    Article  CAS  Google Scholar 

  14. Kim SD, Ko PS, Park KS (2013) Perhydropolysilazane spin-on dielectrics for inter-layer-dielectric applications of sub-30 nm silicon technology. Semicond Sci Technol 28:1–6. https://doi.org/10.1088/0268-1242/28/3/035008

    Article  CAS  Google Scholar 

  15. Urabe Y, Sameshima T (2008) Polysilazane precursor used for formation of oxidized insulator. Mater Res Soc Symp Proc 1066:107–111. https://doi.org/10.1557/proc-1066-a05-02

    Article  Google Scholar 

  16. Bertoncello R, Vezzoli A, Rebollo E (2016) Corrosion behaviour of room temperature cured polysilazane-derived silica coatings on Al 5086. Int J Eng Res Sceince 2:105–112

    Google Scholar 

  17. Günthner M, Kraus T, Krenkel W et al (2009) Particle-Filled PHPS silazane-based coatings on steel. Int J Appl Ceram Technol 6:373–380. https://doi.org/10.1111/j.1744-7402.2008.02346.x

    Article  CAS  Google Scholar 

  18. Kozuka H, Nakajima K, Uchiyama H (2013) Superior properties of silica thin films prepared from perhydropolysilazane solutions at room temperature in comparison with conventional alkoxide-derived silica gel films. ACS Appl Mater Interfaces 5:8329–8336. https://doi.org/10.1021/am400845y

    Article  CAS  Google Scholar 

  19. Isoda T, Kaya H, Nishii H et al (1992) Perhydropolysilazane precursors to silicon nitride ceramics. J Inorg Organomet Polym 2:151–160. https://doi.org/10.1007/BF00696542

    Article  CAS  Google Scholar 

  20. Kamiya K, Oka A, Nasu H, Hashimoto T (2000) Comparative study of structure of silica gels from different sources. J Sol-Gel Sci Technol 19:495–499. https://doi.org/10.1023/A:1008720118475

    Article  CAS  Google Scholar 

  21. Funayama O, Tahiro Y, Kamo A et al (1994) Conversion mechanism of perhydropolysilazane into silicon nitride-based ceramics. J Mater Sci 29:4883–4888. https://doi.org/10.1007/BF00356538

    Article  CAS  Google Scholar 

  22. Kamiya K, Tange T, T.HASHIMOTO, H. NASU YS, (2001) Formation process of silica glass thin films from perhydropolysilazane. ResRepFacEngMie Univ 26:23–31

    CAS  Google Scholar 

  23. Kobayashi Y, Yokota H, Fuchita Y et al (2013) Characterization of gas barrier silica coatings prepared from perhydropolysilazane films by vacuum ultraviolet irradiation. J Ceram Soc Japan 121:215–218. https://doi.org/10.2109/jcersj2.121.215

    Article  CAS  Google Scholar 

  24. Prager L, Dierdorf A, Liebe H et al (2007) Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings. Chem a Eur J 13:8522–8529. https://doi.org/10.1002/chem.200700351

    Article  CAS  Google Scholar 

  25. Ohishi T, Yamazaki Y (2017) Formation and gas barrier characteristics of polysilazane-derived silica coatings formed by excimer light irradiation on PET films with vacuum evaporated silica coatings. Mater Sci Appl 8:1–14. https://doi.org/10.4236/msa.2017.81001

    Article  CAS  Google Scholar 

  26. Ohishi T, Ichikawa K, Isono S (2020) Heat-resistant properties of a SiO2-coated pet film prepared by irradiating a polysilazane-coated film with excimer light. Mater Sci Appl 11:58–69. https://doi.org/10.4236/msa.2020.111005

    Article  CAS  Google Scholar 

  27. Naganuma Y, Horiuchi T, Kato C, Tanaka S (2013) Low-temperature synthesis of silica coating on a poly(ethylene terephthalate) film from perhydropolysilazane using vacuum ultraviolet light irradiation. Surf Coatings Technol 225:40–46. https://doi.org/10.1016/j.surfcoat.2013.03.014

    Article  CAS  Google Scholar 

  28. Ohishi T, Yanagida K (2016) Preparation and gas barrier characteristics of polysilazane derived multi-layered silica thin films formed on alicyclic polyimide film using ultraviolet irradiation. Front Nanosci Nanotechnol 2:173–178. https://doi.org/10.15761/FNN.1000131

  29. Ohishi T, Sone S, Yanagida K (2014) Preparation and gas barrier characteristics of polysilazane-derived silica thin films using ultraviolet irradiation. Mater Sci Appl 05:105–111. https://doi.org/10.4236/msa.2014.53015

    Article  CAS  Google Scholar 

  30. Ohishi T, Yamazaki Y, Nabatame T (2016) Preparation, structure and gas barrier characteristics of poly silazane-derived silica thin film formed on PET by simultaneously applying ultraviolet-irradiation and heat-treatment. Front Nanosci Nanotechnol 2:149–154. https://doi.org/10.15761/fnn.1000126

  31. Kubo T, Kozuka H (2006) Conversion of perhydropolysilazane-to-silica thin films by exposure to vapor from aqueous ammonia at room temperature. J Ceram Soc Japan 114:517–523. https://doi.org/10.2109/jcersj.114.517

    Article  CAS  Google Scholar 

  32. Kozuka H, Fujita M, Tamoto S (2008) Polysilazane as the source of silica: the formation of dense silica coatings at room temperature and the new route to organic–inorganic hybrids. J Sol-Gel Sci Technol 48:148–155. https://doi.org/10.1007/s10971-008-1793-1

    Article  CAS  Google Scholar 

  33. Kubo T (2004) Preparation of hot water-resistant silica thin films from polysilazane solution at room temperature. J Sol-Gel Sci Technol 31:257–261. https://doi.org/10.1023/B:JSST.0000047999.87439.c2

    Article  CAS  Google Scholar 

  34. Lee J, Oh J, Moon S et al (2010) A technique for converting perhydropolysilazane to SiO x at low temperature. Electrochem Solid-State Lett 13:2009–2011. https://doi.org/10.1149/1.3264092

    Article  CAS  Google Scholar 

  35. Druffel T, Dharmadasa R, Lavery BW, Ankireddy K (2018) Intense pulsed light processing for photovoltaic manufacturing. Sol Energy Mater Sol Cells 174:359–369. https://doi.org/10.1016/j.solmat.2017.09.010

    Article  CAS  Google Scholar 

  36. Kang JS, Ryu J, Kim HS, Hahn HT (2011) Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J Electron Mater 40:2268. https://doi.org/10.1007/s11664-011-1711-0

    Article  CAS  Google Scholar 

  37. Benwadih M, Coppard R, Bonrad K et al (2016) High mobility flexible amorphous IGZO thin-film transistors with a low thermal budget ultra-violet pulsed light process. ACS Appl Mater Interfaces 8:34513–34519. https://doi.org/10.1021/acsami.6b09990

    Article  CAS  Google Scholar 

  38. Kim H-S, Dhage SR, Shim D-E, Hahn HT (2009) Intense pulsed light sintering of copper nanoink for printed electronics. Appl Phys A 97:791. https://doi.org/10.1007/s00339-009-5360-6

    Article  CAS  Google Scholar 

  39. Back HS, Kim MJ, Baek JJ et al (2019) Intense-pulsed-UV-converted perhydropolysilazane gate dielectrics for organic field-effect transistors and logic gates. RSC Adv 9:3169–3175. https://doi.org/10.1039/c8ra09831j

    Article  CAS  Google Scholar 

  40. Bauer F, Decker U, Dierdorf A et al (2005) Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy. Prog Org Coatings 53:183–190. https://doi.org/10.1016/j.porgcoat.2005.02.006

    Article  CAS  Google Scholar 

  41. Zhang Z, Shao Z, Luo Y et al (2015) Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane. Polym Int 64:971–978. https://doi.org/10.1002/pi.4871

    Article  CAS  Google Scholar 

  42. Spectroscopy XP (2012) The conversion of perhydropolysilazane into sion films characterized by X-ray photoelectron spectroscopy. J Am Ceram Soc 95:3722–3725. https://doi.org/10.1111/jace.12045

    Article  CAS  Google Scholar 

  43. Wang K, Gu M, Motz G et al (2013) Control of surface energy of silicon oxynitride films. Langmuir 29:2889–2896. https://doi.org/10.1021/la304307y

    Article  CAS  Google Scholar 

  44. Oya K, Watanabe R, Sasaki S et al (2014) Surface characteristics of polyethylene terephthalate (PET) film exposed to active oxygen species generated via ultraviolet (UV) lights irradiation in high and low humidity conditions. J Photopolym Sci Technol 27:409–414. https://doi.org/10.2494/photopolymer.27.409

    Article  Google Scholar 

  45. Nakajima K, Uchiyama H, Kitano T, Kozuka H (2013) Conversion of solution-derived perhydropolysilazane thin films into silica in basic humid atmosphere at room temperature. J Am Ceram Soc 96:2806–2816. https://doi.org/10.1111/jace.12513

    Article  CAS  Google Scholar 

  46. Mat KE (1995) Plasma-enhanced growth, composition and refractive index of silicon oxy-nitride films. J Appl Phys 77:6616–6623. https://doi.org/10.1063/1.359072

    Article  Google Scholar 

  47. Charitidis C, Logothetidis S (2005) Nanomechanical and nanotribological properties of carbon based films. Thin Solid Films 482:120–125. https://doi.org/10.1016/j.tsf.2004.11.129

    Article  CAS  Google Scholar 

  48. Bae BS, Choi GM, Kim YH et al (2017) Flexible hard coating (Flex9h®) for foldable display cover plastic film. Dig Tech Pap - SID Int Symp 48:215–217. https://doi.org/10.1002/sdtp.11665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the Korea Institute of Industrial Technology under the grant entitled “Development of eco-friendly production system technology for total periodic resource cycle (KITECH EO-21-0014).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyojic Shin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, J.J., Park, S.M., Kim, Y.R. et al. Intense pulsed UV light treatment to design functional optical films from perhydropolysilazane: an alternative to conventional heat treatment processes. J Mater Sci 57, 254–273 (2022). https://doi.org/10.1007/s10853-021-06598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06598-3

Navigation