Skip to main content

Advertisement

Log in

Ordered LiGa5O8 loaded with redox capable Cu2+, Cr3+ ions to manifest interesting optical, magnetic, and catalytic properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystal structure and associated property changes brought about by substituting Cu2+ and Cr3+ ions for Li+ and Ga3+ ions, respectively, in ordered LiGa5O8 are probed in the present work. The samples were synthesized by a single-step calcination process of epoxide-mediated xerogels rapidly and characterized extensively. Powder X-ray diffraction patterns revealed the preservation of the superstructure of spinel up to 50 mol % Cu2+ with Li+, 20 mol % Cr3+ with Ga3+ and coupled substitution of Cu2+ (25 mol %) and Cr3+ (5 mol %) with Li and Ga, respectively. The structural refinements and electron microscopic analysis (high-resolution transmission electron microscopy and selected area electron diffraction) confirmed the samples’ ordered spinel structure. Raman and FTIR features confirmed the lower symmetry arising from the cation ordering in the samples. UV–visible and electron paramagnetic resonance spectroscopy measurements on Cu- and Cr-containing samples revealed their oxidation state and site preferences. Reversible peaks in DSC heating and cooling traces showed order/disorder phase transition in Cu2+(1069 and 1044 °C)- and Cr3+(1100 and 1038 °C) substituted samples. Photoemission in the red region and antiferromagnetic behavior with a Néel temperature of 8 K were displayed by the Cr-containing LiGa5O8. The Cu2+-substituted samples catalyzed the reduction of the nitroaromatics while Cr3+-containing sample catalyzed the photodegradation of Rh-6G dye solution. The coupled substituted sample (Cu/Cr), being advantageous, could perform both catalytic conversions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rao CNR, Gopalakrishnan J (1997) New directions in solid state chemistry, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases. ASM International, Materials Park, OH.

  3. Burdett JK (1995) Chemical bonding in solids. Oxford University Press, Oxford

    Google Scholar 

  4. Wyckoff RWG (1981) Crystal structures, Vol. 2 and 3. Robert E. Krieger Publishing Company, Malabar, Florida.

  5. Muller O, Roy R (1974) The major ternary structural families. Springer-Verlag, Berlin

    Book  Google Scholar 

  6. Zhao Q, Yan Z, Chen C, Chen J (2017) Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev 117:10121–10211. https://doi.org/10.1021/acs.chemrev.7b00051

    Article  CAS  Google Scholar 

  7. Zhang X, Zunger A (2010) Diagrammatic separation of different crystal structures of A2BX4 compounds without energy minimization: a pseudopotential orbital radii approach. Adv Funct Mater 20:1944–1952. https://doi.org/10.1002/adfm.200901811

    Article  CAS  Google Scholar 

  8. Kocevski V, Pilania G, Uberuaga BP (2020) High-throughput investigation of the formation of double spinels. J Mater Chem A 8:25756–25767. https://doi.org/10.1039/d0ta09200b

    Article  CAS  Google Scholar 

  9. Pilania G, Kocevski V, Valdez JA, Kreller CR, Uberuaga BP (2020) Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Commun Mater 1:84. https://doi.org/10.1038/s43246-020-00082-2

    Article  Google Scholar 

  10. Stevanovic V, Avezac MD, Zunger A (2011) Universal electrostatic origin of cation ordering in A2BO4 spinel oxides. J Am Chem Soc 133:11649–11654. https://doi.org/10.1021/ja2034602

    Article  CAS  Google Scholar 

  11. Yang H, Wang Z, Zhao M, Wang J, Han D, Luo H, Wang L (1997) A study of the magnetic properties of nanocrystalline LiFe5O8 and Li0.5Fe2.3Cr0.2O4 particles. Mater Chem Phys 48:60–63. https://doi.org/10.1016/S0254-0584(97)80078-8

    Article  CAS  Google Scholar 

  12. Mohapatra PP, Dobbidi P (2020) Magnetic and broadband dielectric studies of calcium-substituted LiFe5O8. J Magn Magn Mater 500:166354. https://doi.org/10.1016/j.jmmm.2019.166354

    Article  CAS  Google Scholar 

  13. Liu F, Yan W, Chuang Y-J, Zhen Z, Xie J, Pan Z (2013) Photo stimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3:3554. https://doi.org/10.1038/srep01554

    Article  CAS  Google Scholar 

  14. Riesen H, Yildirim B (2010) Persistent spectral hole-burning in diffuse reflection: application to nanocrystalline LiGa5O8: Co2+. J Phys Chem Lett 1:2380–2384. https://doi.org/10.1021/jz100806d

    Article  CAS  Google Scholar 

  15. Riesen H (2008) On the 6A14T1 luminescence of Fe3+ in disordered nanocrystalline LiGa5O8 prepared by a combustion reaction. Chem Phys Lett 461:218–221. https://doi.org/10.1016/j.cplett.2008.07.016

    Article  CAS  Google Scholar 

  16. Xiong P, Peng M, Qin K, Xu F, Xu X (2019) Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging. Adv Opt Mater 7:1901107. https://doi.org/10.1002/adom.201901107

    Article  CAS  Google Scholar 

  17. Guan W, Xiao S, Yang X (2020) Broadband-sensitive up-conversion phosphor of Ni2+, Tm3+ co-doped LiGa5O8. J Lumin 217:116795. https://doi.org/10.1016/j.jlumin.2019.116795

    Article  CAS  Google Scholar 

  18. Singh V, Sivaramaiah G, Singh N, Rao JL (2019) Investigation on thermodynamic and paramagnetic centers in Gd-doped LiGa5O8 inverse-spinel-structure. J Electron Mater 48:6359–6365. https://doi.org/10.1007/s11664-019-07438-6

    Article  CAS  Google Scholar 

  19. Abritta T, Melamed NT, Neto JM, Barros FD (1979) The optical properties of Cr3+ in LiAl5O8 and LiGa5O8. J Lumin 18–19:179–182. https://doi.org/10.1016/0022-2313(79)90098-X

    Article  Google Scholar 

  20. Singh V, Ravikumar RVSSN, Sivaramaiah G, Rao JL, Kim SH (2015) Investigations of the optical and EPR properties of LiGa5O8: Cr3+ phosphor. Mater Res Bull 61:183–188. https://doi.org/10.1016/j.materresbull.2014.09.092

    Article  CAS  Google Scholar 

  21. Huang W, Gong X, Cui R, Li X, Li L, Wang X, Deng C (2018) Enhanced persistent luminescence of LiGa5O8:Cr3+ near-infrared phosphors by co-doping Sn4+. J Mater Sci: Mater Electron 29:10535–10541. https://doi.org/10.1007/s10854-018-9117-x

    Article  CAS  Google Scholar 

  22. Teixeira VC, Manali IF, Gallo TM, Galante D, Barbosa DAB, Paschoal CWA, Silva RS, Rezende MVDS (2020) Luminescent properties of Li(Ga1-xCrx)5O8 (LGCO) phosphors. Ceram Int 46:15779–15785. https://doi.org/10.1016/j.ceramint.2020.03.122

    Article  CAS  Google Scholar 

  23. Sousa OM, Carvalho IP (2020) Theoretical study of the structural, energetic, electronic, and magnetic properties of the host matrix LiGa5O8 doped with Cr3+. J Solid State Chem 289:121472. https://doi.org/10.1016/j.jssc.2020.121472

    Article  CAS  Google Scholar 

  24. Rao EN, Ghose J (1987) Order-disorder studies on copper substituted lithium aluminate and lithium gallate spinels. Mater Res Bull 22:951–956. https://doi.org/10.1016/0025-5408(87)90094-8

    Article  CAS  Google Scholar 

  25. Rogers DB, Germann RW, Arnott RJ (1965) Effect of trivalent manganese on the crystal chemistry of some lithium spinels. J Appl Phys 36:2338–2342. https://doi.org/10.1063/1.1714486

    Article  CAS  Google Scholar 

  26. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS); Los Alamos national laboratory report LAUR 86–748.

  27. Toby BH (2001) EXPGUI, A graphical user interface for GSAS. J Appl Cryst 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  28. Singh J, Uma S (2009) Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO3 under visible and UV light irradiation. J Phys Chem C 113:12483–12488. https://doi.org/10.1021/jp901729v

    Article  CAS  Google Scholar 

  29. Takahashi S, Kan A, Ogawa H (2016) Microwave dielectric properties of spinel-structured Li0.5Ga2.5O4 ceramics with cation ordering on octahedral sites. Jpn J Appl Phys 55:10TE01. https://doi.org/10.7567/JJAP.55.10TE01

    Article  CAS  Google Scholar 

  30. Kutty TRN, Nayak M (1998) Cationic distribution and its influence on the luminescent properties of Fe3+-doped LiAl5O8 prepared by wet chemical methods. J Alloys Compd 269:75–87. https://doi.org/10.1016/S0925-8388(98)00159-5

    Article  CAS  Google Scholar 

  31. Keramidas VG, Deangelis BA, White WB (1975) Vibrational spectra of spinels with cation ordering on the octahedral sites. J Solid State Chem 15:233–245. https://doi.org/10.1016/0022-4596(75)90208-X

    Article  CAS  Google Scholar 

  32. Wang Y, Jiang J, Song Z, Zhang J (2021) Structural characterization, & optical and electrical properties of LiGaO2 & LiGa5O8 micro-nanoparticles-based photodetectors. J Alloys Compd 887:161438. https://doi.org/10.1016/j.jallcom.2021.161438

    Article  CAS  Google Scholar 

  33. Hara K, Ishibashi Y (1986) Raman scattering study of lithium gallate LiGa5O8. J Phys Soc Jpn 55:4500–4503. https://doi.org/10.1143/JPSJ.55.4500

    Article  CAS  Google Scholar 

  34. Le Nestour A, Gaudon M, Villeneuve G, Andriessen R, Demourgues A (2007) Steric and electronic effects relating to the Cu2+ Jahn-Teller distortion in Zn1−xCuxAl2O4 spinels. Inorg Chem 46:2645–2658. https://doi.org/10.1021/ic062329c

    Article  CAS  Google Scholar 

  35. Tangcharoen T, Thienprasert JT-, Kongmark C, (2019) Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J Adv Ceram 8:352–366. https://doi.org/10.1007/s40145-019-0317-5

    Article  CAS  Google Scholar 

  36. Gingasu D, Mindru I, Patron L, Marinescu G, Tuna F, Preda S, Calderon-Moreno JM, Andronescu C (2012) Synthesis of CuGa2O4 nanoparticles by precursor and self-propagating combustion methods. Ceram Int 38:6739–6751. https://doi.org/10.1016/j.ceramint.2012.05.067

    Article  CAS  Google Scholar 

  37. Datta RK (1971) Polymorphism of LiGa5O8 and of LiGa5O8–MgGa2O4 solid solutions. J Am Ceram Soc 54:262–265. https://doi.org/10.1111/j.1151-2916.1971.tb12285.x

    Article  CAS  Google Scholar 

  38. Reeves N, Pasero D, West AR (2007) Order-disorder transition in the complex lithium spinel Li2CoTi3O8. J Solid State Chem 180:1894–1901. https://doi.org/10.1016/j.jssc.2007.04.015

    Article  CAS  Google Scholar 

  39. Hu J, Zhao W, Hu R, Chang G, Li C, Wang L (2014) Catalytic activity of spinel oxides MgCr2O4 and CoCr2O4 for methane combustion. Mater Res Bull 57:268–273. https://doi.org/10.1016/j.materresbull.2014.06.001

    Article  CAS  Google Scholar 

  40. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press

    Google Scholar 

  41. Xiong Z, Zhang H, Zhang W, Lai B, Yao G (2019) Removal of nitrophenols and their derivatives by chemical redox: a review. Chem Eng J 359:13–31. https://doi.org/10.1016/j.cej.2018.11.111

    Article  CAS  Google Scholar 

  42. Fang J, Chen X, Wu Y, Liu H (2020) Facile and green synthesis of Au nanorods/graphene oxide nanocomposite with excellent catalytic properties for reduction of 4-nitrophenol. J Mater Sci 55:5880–5891. https://doi.org/10.1007/s10853-020-04410-2

    Article  CAS  Google Scholar 

  43. Abbasi A, Khojasteh H, Hamadanian M, Salavati-Niasari M (2018) Normal spinel CdCr2O4 and CdCr2O4/Ag nanocomposite as novel photocatalysts, for degradation of water contaminates. Sep Purif Technol 195:37–49. https://doi.org/10.1016/j.seppur.2017.11.077

    Article  CAS  Google Scholar 

  44. Borhan AI, Samoila P, Hulea V, Iordan AR, Palamaru MN (2014) Photocatalytic activity of spinel ZnFe2−xCrxO4 nanoparticles on removal orange I azo dye from aqueous solution. J Taiwan Inst Chem Eng 45:1655–1660. https://doi.org/10.1016/j.jtice.2013.12.002

    Article  CAS  Google Scholar 

  45. Cherifi K, Rekhila G, Omeiri S, Bessekhouad Y, Trari M (2019) Physical and photoelectrochemical properties of the spinel ZnCr2O4 prepared by sol–gel: application to orange II degradation under solar light. J Photochem Photobiol A: Chem 368:290–295. https://doi.org/10.1016/j.jphotochem.2018.10.003

    Article  CAS  Google Scholar 

  46. Pratap Kumar C, Prashantha SC, Dileep Kumar VG, Santosh MS, Ravikumar CR, Anilkumar MR, Shashidhara TS, Swamy CN, Jahagirdar AA, Alam MW, Chen Z, Bui X-T (2021) Structural, photocatalytic and electrochemical studies on facile combustion synthesized low-cost nano chromium (III) doped polycrystalline magnesium aluminate spinels. J Sci Adv Mater Devices 6:462–471. https://doi.org/10.1016/j.jsamd.2021.05.009

    Article  CAS  Google Scholar 

  47. Yazdanbakhsh M, Khosravi I, Goharshadi EK, Youssefi A (2010) Fabrication of nano spinel ZnCr2O4 using sol–gel method and its application on removal of azo dye from aqueous solution. J Hazard Mater 184:684–689. https://doi.org/10.1016/j.jhazmat.2010.08.092

    Article  CAS  Google Scholar 

  48. Fardood ST, Forootan R, Moradnia F, Afshari Z, Ramazani A (2020) Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Mater Res Express 7:015086. https://doi.org/10.1088/2053-1591/ab6c8d

    Article  CAS  Google Scholar 

  49. Abbasi A, Safar Sajadi SM, Amiri O, Hamadanian M, Moayedi H, Salavati-Niasari M, Beigi MM (2019) MgCr2O4 and MgCr2O4/Ag nanostructures: facile size-controlled synthesis and their photocatalytic performance for destruction of organic contaminants. Compos B: Eng 175:107077. https://doi.org/10.1016/j.compositesb.2019.107077

    Article  CAS  Google Scholar 

  50. Tripathi VK, Nagarajan R (2016) Rapid synthesis of mesoporous, nano-sized MgCr2O4 and its catalytic properties. J Am Ceram Soc 99:814–818. https://doi.org/10.1111/jace.14036

    Article  CAS  Google Scholar 

  51. Shrivastava V, Nagarajan R (2020) Modulating the optical and magnetic properties of geometrically frustrated ZnV2O4 by the introduction of indium (nonmagnetic ions), iron, and chromium (magnetic ions). Dalton Trans 49:15810–15820. https://doi.org/10.1039/D0DT02554B

    Article  CAS  Google Scholar 

  52. Vader VT (2015) Photocatalytic performance of fine particles of Cr doped magnesium ferrites prepared by sol–gel combustion route. J Mater Sci Mater Electron 26:66–71. https://doi.org/10.1007/s10854-014-2363-7

    Article  CAS  Google Scholar 

  53. Jesus Cubas PD, Semkiw AW, Monteiro FC, Weinert PL, Monteiro JFHL, Fujiwara ST (2020) Synthesis of CuCr2O4 by self-combustion method and photocatalytic activity in the degradation of Azo Dye with visible light. J Photochem Photobiol A: Chem 401:112797. https://doi.org/10.1016/j.jphotochem.2020.112797

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by SERB (EMR/2016/006131 and EMR/2016/006762), the Government of India. PY and SU thank UGC and CSIR, Government of India, for providing a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamani Nagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2021_6572_MOESM1_ESM.doc

TG-DSC traces of LGO, LCGO25, LCGO50, and LCGCO, PXRD pattern of 60 mol % Cu-substituted LGO, FESEM image of LCGCO sample. Summary of crystallographic parameters obtained from the Rietveld refinement of LGO, LCGO25, LCGO50, LGCO, and LCGCO. UV spectra, Ct/C0 and ln C0/Ct to reduce 4-NA, 4-NP, and 2,4-DNP using LCGO50 and LCGO25; ln(C0/Ct) plots and PXRD pattern obtained after the use of LCGCO in photodegradation of Rh-6G. (DOC 4113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Uniyal, S., Uma, S. et al. Ordered LiGa5O8 loaded with redox capable Cu2+, Cr3+ ions to manifest interesting optical, magnetic, and catalytic properties. J Mater Sci 56, 20111–20125 (2021). https://doi.org/10.1007/s10853-021-06572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06572-z