Skip to main content
Log in

Effect of annealing temperature on microstructure and thermoelectric transport properties of Cu2.1Zn0.9SnSe4 alloys

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cu-based quaternary chalcogenide compounds have been thermoelectric topic of interest among researchers, especially in recent years, due to their intrinsically low thermal conductivity. Recently plenty of work is done on thermoelectric properties of Cu2ZnSnSe4-based alloys emphasizing on importance of Cu2ZnSnSe4-based alloys in thermoelectric power generation. In this study, we report the effect of annealing temperature on microstructure and thermoelectric properties of Cu2.1Zn0.9SnSe4 alloys. Cu2.1Zn0.9SnSe4 compounds were synthesized by high-temperature melting followed by annealing at four different temperatures (600 °C, 650 °C, 700 °C and 725 °C). X-ray diffraction combined with Raman spectroscopy confirmed the presence of Cu2ZnSnSe4 phase along with ZnSe and CuSe secondary phases. The increased annealing temperature critically affected the microstructure of Cu2.1Zn0.9SnSe4 alloys. Successive increase in annealing temperature subsequently increases the average grain size from 7.3 for 600 sample to 12.1 μm for 725 °C sample by shifting grain size distribution toward higher range. Increased grain size results in reduced carrier scattering and decreases the electrical resistivity eventually improving power factor and maximum power factor of about 400 μWk−2 m−1 is obtained for 725 °C sample. Besides, the increased annealing temperature resulted in increased thermal conductivity attributing increased grain size resulting in low phonon scattering. 725 °C sample shows highest power factor and moderate thermal conductivity among all the samples which resulted in highest value of figure of merit for 725 °C sample of about 0.1 at 673 K.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lee YS, Gershon T, Gunawan O, Todorov TK, Gokmen T, Virgus Y, Guha S (2015) Cu2ZnSnSe4 Thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion Length. Adv Energy Mater 5:1401372

    Article  Google Scholar 

  2. Li Z, Zhang W, Gu B, Zhao C, Ye B, Xiao C, Xie Y (2021) Vacancy cluster-induced local disordered structure for the enhancement of thermoelectric property in Cu2ZnSnSe4. J Mater Chem A 9:1006–1013

    Article  CAS  Google Scholar 

  3. Chen D, Zhao Y, Chen Y, Wang B, Wang Y, Zhou J, Liang Z (2015) Hot-injection synthesis of Cu-Doped Cu2ZnSnSe4 nanocrystals to reach thermoelectric zT of 0.70 at 450 °C. ACS Appl Mater Interfaces 7:24403–24408

    Article  CAS  Google Scholar 

  4. Zheng X, Liu Y, Du Y, Sun Y, Li J, Zhang R, Li Q, Chen P, Zhao G, Fang Y, Dai N (2018) P-type quaternary chalcogenides of Cu2ZnSn(S, Se)4 nanocrystals: large-scale synthesis, bandgap engineering and their thermoelectric performances. J Alloy Compd 738:484–490

    Article  CAS  Google Scholar 

  5. Huo T, Mehmood F, Wang H, Su W, Wang X, Chen T, Zhang K, Feng J, Wang C (2020) Thermoelectric properties of low Te concentration-doped Cu2ZnSnSe4-based quaternary alloys. Phys Status Solidi (A) 217:2000198

    Article  CAS  Google Scholar 

  6. Liu M-L, Huang F-Q, Chen L-D, Chen I-W (2009) A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se). Appl Phys Lett 94:202103

    Article  Google Scholar 

  7. Zhu Y, Liu Y, Tan X, Ren G, Yu M, Hu T, Marcelli A, Xu W (2018) Enhanced thermoelectric performance through grain boundary engineering in quaternary chalcogenide Cu2ZnSnSe4. AIP Adv 8:045218

    Article  Google Scholar 

  8. Dong Y, Wang H, Nolas GS (2014) Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys Status Solidi (RRL) Rapid Res Lett 8: 61–64

  9. Dong Y, Eckert B, Wang H, Zeng X, Tritt TM, Nolas GS (2015) Synthesis, crystal structure, and transport properties of Cu2.2Zn0.8SnSe4−xTex (0.1 ≤ x ≤ 0.4). Dalton Trans 44:9014–9019

    Article  CAS  Google Scholar 

  10. Shi XY, Huang FQ, Liu ML, Chen LD (2009) Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4. Appl Phys Lett 94:122103

    Article  Google Scholar 

  11. Raju C, Falmbigl M, Rogl P, Yan X, Bauer E, Horky J, Zehetbauer M, Mallik RC (2013) Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4. AIP Adv 3:032106

    Article  Google Scholar 

  12. Fan F-J, Wang Y-X, Liu X-J, Wu L, Yu S-H (2012) Large-Scale colloidal synthesis of non-stoichiometric cu2znsnse4 nanocrystals for thermoelectric applications. Adv Mater 24:6158–6163

    Article  CAS  Google Scholar 

  13. Liu G, Li J, Chen K, Li Y, Zhou M, Han Y, Li L (2016) Direct fabrication of highly-dense Cu2ZnSnSe4 bulk materials by combustion synthesis for enhanced thermoelectric properties. Mater Des 93:238–246

    Article  CAS  Google Scholar 

  14. Zhu Y, Liu Y, Ren G, Tan X, Yu M, Lin Y-H, Nan C-W, Marcelli A, Hu T, Xu W (2018) Lattice dynamics and thermal conductivity in Cu2Zn1–xCoxSnSe4. Inorg Chem 57:6051–6056

    Article  CAS  Google Scholar 

  15. Wei K, Beauchemin L, Wang H, Porter WD, Martin J, Nolas GS (2015) Enhanced thermoelectric properties of Cu2ZnSnSe4 with Ga-doping. J Alloy Compd 650:844–847

    Article  CAS  Google Scholar 

  16. Dong Y, Wang H, Nolas GS (2013) Synthesis, crystal structure, and high temperature transport properties of p-type Cu2Zn1–xFexSnSe4. Inorg Chem 52:14364–14367

    Article  CAS  Google Scholar 

  17. Wei T-R, Guan M, Yu J, Zhu T, Chen L, Shi X (2018) How to measure thermoelectric properties reliably. Joule 2:2183–2188

    Article  Google Scholar 

  18. Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary Chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132:4514–4515

    Article  CAS  Google Scholar 

  19. Mehmood F, Wang H, Su W, Khan M, Huo T, Chen T, Chebanova G, Romanenko A, Wang C (2021) Enhanced power factor and figure of merit of Cu2ZnSnSe4-based thermoelectric composites by Ag alloying. Inorg Chem 60:3452–3459

    Article  CAS  Google Scholar 

  20. Salomé PMP, Fernandes PA, da Cunha AF (2009) Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers. Thin Solid Films 517:2531–2534

    Article  Google Scholar 

  21. Juškėnas R, Niaura G, Mockus Z, Kanapeckaitė S, Giraitis R, Kondrotas R, Naujokaitis A, Stalnionis G, Pakštas V, Karpavičienė V (2016) XRD studies of an electrochemically co-deposited Cu–Zn–Sn precursor and formation of a Cu2ZnSnSe4 absorber for thin-film solar cells. J Alloy Compd 655:281–289

    Article  Google Scholar 

  22. Masrat S, Poolla R, Dipak P, Zaman MB (2021) Rapid hydrothermal synthesis of highly crystalline transition metal (Mn & Fe) doped CuSe nanostructures: applications in wastewater treatment and room temperature gas sensing. Surf Interfaces 23:100973

    Article  CAS  Google Scholar 

  23. Shitu IG, Talib ZA, Chi JLY, Kechick MMA, Baqiah H (2020) Influence of tartaric acid concentration on structural and optical properties of CuSe nanoparticles synthesized via microwave assisted method. Results Phys 17:103041

    Article  Google Scholar 

  24. Olekseyuk ID, Gulay LD, Dydchak IV, Piskach LV, Parasyuk OV, Marchuk OV (2002) Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds. J Alloy Compd 340:141–145

    Article  CAS  Google Scholar 

  25. Chen T, Zhang K, Wang H, Su W, Mehmood F, Wang T, Zhai J, Wang X, Huo T, Wang C (2020) The high thermoelectric performance of slightly Sb doped PbTe alloys. J Mater Chem C 8:1679–1685

    Article  CAS  Google Scholar 

  26. Madelung O (2004) Semiconductors: data handbook. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  27. Blatt FJ (1968) Physics of electronic conduction in solids. McGraw-Hill, New York

    Google Scholar 

  28. Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506

    Article  Google Scholar 

  29. Slack GA (1972) Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ Impurities. Phys Rev B 6:3791–3800

    Article  CAS  Google Scholar 

  30. Chetty R, Falmbigl M, Rogl P, Heinrich P, Royanian E, Bauer E, Suwas S, Mallik RC (2013) The effect of multisubstitution on the thermoelectric properties of chalcogenide-based Cu2.1Zn0.9Sn1−xInxSe4 (0 ≤ x ≤ 0.1). Phys Status Solidi (A) 210:2471–2478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is financially supported by National Key R&D Program of China of 2017YFE0195200, the Natural Science Fund of China under grant Nos. 51871134 and 52111530034, the Science Fund of Shandong Province under grant No. ZR2019MEM007, and Qilu Young Scholar Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Wang or Chunlei Wang.

Ethics declarations

Conflict of interests

There are no conflict to declare.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, F., Wang, H., Su, W. et al. Effect of annealing temperature on microstructure and thermoelectric transport properties of Cu2.1Zn0.9SnSe4 alloys. J Mater Sci 56, 20087–20097 (2021). https://doi.org/10.1007/s10853-021-06566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06566-x