Skip to main content

Nanomaterials with high solar reflectance as an emerging path towards energy-efficient envelope systems: a review

Abstract

The application of nanomaterials in the construction field is allowing the development of smart, green, durable and more efficient buildings. Among the most widely researched nanomaterials are nanosized cool pigments, which are being enforced to achieve thermal and energy-efficient façades, with the development of high reflectance and retro-reflectance coatings. Their peculiar optical and catalytic activity turns nanomaterials into suitable candidates to be used as dark coloured high solar reflectance without affecting aesthetic characteristics, thus improving the durability of coatings. The objective of this paper is to review the state-of-the-art on the benefits of using high reflectance nanopigments as coatings in building façades and their production and synthesis processes. It is thus divided into three main topics: (i) the benefits of using nanopigments on façades, (ii) the most important nanomaterials used as cool pigments and (iii) the main methods of synthesizing nanopigments. One expects that the study of near-infrared nanopigmentation synthesis processes will be able to promote and disseminate the use of nanotechnology in construction, assessing the production problems and limitation and thus helping to disseminate new products by reducing production costs and increase availability.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1

Reproduced with permission from ref [33], Copyright 2011, Elsevier

Figure 2
Figure 3

Reproduced with permission from Ref. [59], Copyright 2015, Elsevier

Figure 4

Reproduced with permission from ref. [60], Copyright 2016, Elsevier

Figure 5

Reproduced with permission from ref. [70], Copyright 2014, Elsevier

Figure 6
Figure 7

Reproduced with permission from ref. [101], Copyright 2014, Elsevier

Figure 8

Reproduced with permission from ref. [102], Copyright 2017, Elsevier

Figure 9

Reproduced with permission from ref. [105], Copyright 2013, Cambridge University Press

Figure 10
Figure 11

Reproduced with permission from ref. [79], Copyright 2013, Elsevier

Figure 12
Figure 13
Figure 14

Reproduced with permission from ref. [82], Copyright 2015, Elsevier

Figure 15

Reproduced with permission from ref. [82], Copyright 2015, Elsevier

Figure 16

Reproduced with permission from ref. [134], Copyright 2017, Elsevier

Figure 17

Reproduced with permission from ref. [137], Copyright 2017, Hindawi; b Diffuse reflectance of CoAl2O4 after 15 min at 600 °C (squares) and standard CoAl2O4 pigment (circles). Reproduced with permission from ref. [148], Copyright 2000, Royal Society of Chemistry

Figure 18

Reproduced with permission from ref [146], Copyright 2016, Elsevier

Figure 19

Reproduced with permission from ref. [138], Copyright 2017, Elsevier

Figure 20

Reproduced with permission from ref. [139], Copyright 2015, Elsevier

Figure 21

Reproduced with permission from ref. [154], Copyright 2014, Elsevier

Figure 22

Reproduced with permission from ref. [155], Copyright 2018, Elsevier

Figure 23

Reproduced with permission from ref. [116], Copyright 2019, Elsevier

Figure 24

Reproduced with permission from ref. [63], Copyright 2018, Elsevier

Figure 25

Reproduced with permission from ref. [163], Copyright 2019, Elsevier

Figure 26

Reproduced with permission from ref. [170], Copyright 2016, American Chemical Society Publications

Figure 27

Reproduced with permission from ref. [176], Copyright 2019, Elsevier

Figure 28

Reproduced with permission from ref. [186], Copyright 2017, Elsevier

Figure 29

Reproduced with permission from ref. [190], Copyright 2018, Elsevier

Figure 30

Reproduced with permission from ref. [189], Copyright 2015, Elsevier

Figure 31

Reproduced with permission from ref. [195], Copyright 2018, CSIRO Publishing

Figure 32

Reproduced with permission from ref. [199], Copyright 2019, Elsevier

Figure 33
Figure 34
Figure 35

Reproduced with permission from ref. [167], Copyright 2016, Elsevier

Figure 36
Figure 37

Reproduced with permission from ref. [188], Copyright 2014, American Chemical Society Publications

Figure 38
Figure 39

Reproduced with permission from ref. [143], Copyright 2018, Royal Society of Chemistry

Figure 40
Figure 41

References

  1. Kumar S, Bhanjana G, Sharma A et al (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278. https://doi.org/10.1016/j.scitotenv.2017.02.138

    CAS  Article  Google Scholar 

  2. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222. https://doi.org/10.1016/j.jhazmat.2012.10.025

    CAS  Article  Google Scholar 

  3. Rico CM, Hong J, Morales MI et al (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642. https://doi.org/10.1021/es401032m

    CAS  Article  Google Scholar 

  4. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515. https://doi.org/10.1016/j.nanoen.2015.07.014

    CAS  Article  Google Scholar 

  5. Ma X, Luo W, Yan M et al (2016) In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24:165–188. https://doi.org/10.1016/j.nanoen.2016.03.023

    CAS  Article  Google Scholar 

  6. Yu R, Lin Q, Leung S-F, Fan Z (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1:57–72. https://doi.org/10.1016/j.nanoen.2011.10.002

    CAS  Article  Google Scholar 

  7. Mishra YK, Murugan NA, Kotakoski J, Adam J (2017) Progress in electronics and photonics with nanomaterials. Vacuum 146:304–307. https://doi.org/10.1016/j.vacuum.2017.09.035

    CAS  Article  Google Scholar 

  8. Ede SR, Anantharaj S, Sakthikumar K et al (2018) Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Mater Today Chem 10:31–78. https://doi.org/10.1016/j.mtchem.2018.07.003

    CAS  Article  Google Scholar 

  9. Das SK, Bhunia MK, Bhaumik A (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39:4382. https://doi.org/10.1039/c000317d

    CAS  Article  Google Scholar 

  10. de Jong (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133. https://doi.org/10.2147/ijn.s596

  11. Jha AK, Prasad K (2019) Nanomaterials from biological and pharmaceutical wastes—a step towards environmental protection. Mater Today Proc 18:1465–1471. https://doi.org/10.1016/j.matpr.2019.06.615

    CAS  Article  Google Scholar 

  12. Juárez-Moreno K, Pestryakov A, Petranovskii V (2014) Engineering of supported nanomaterials. Proc Chem 10:25–30. https://doi.org/10.1016/j.proche.2014.10.006

    CAS  Article  Google Scholar 

  13. Tomar R, Abdala AA, Chaudhary RG, Singh NB (2020) Photocatalytic degradation of dyes by nanomaterials. Mater Today Proc 29:967–973. https://doi.org/10.1016/j.matpr.2020.04.144

    CAS  Article  Google Scholar 

  14. Lewis NS (2016) Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 11:1010–1019. https://doi.org/10.1038/nnano.2016.194

    CAS  Article  Google Scholar 

  15. Wu S, Xu R, Lu M et al (2015) Graphene-containing nanomaterials for lithium-ion batteries. Adv Energy Mater 5:1500400. https://doi.org/10.1002/aenm.201500400

    CAS  Article  Google Scholar 

  16. Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem 781:147–154. https://doi.org/10.1016/j.jelechem.2016.10.030

    CAS  Article  Google Scholar 

  17. Lv M, Liu Y, Geng J et al (2018) Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron 106:122–128. https://doi.org/10.1016/j.bios.2018.01.049

    CAS  Article  Google Scholar 

  18. Louise Liu J, Bashir S (2015) Advanced nanomaterials and their applications in renewable energy. Elsevier, Amsterdam

    Google Scholar 

  19. Sekoai PT, Ouma CNM, du Preez SP et al (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397. https://doi.org/10.1016/j.fuel.2018.10.030

    CAS  Article  Google Scholar 

  20. Khin MM, Nair AS, Babu VJ et al (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075. https://doi.org/10.1039/c2ee21818f

    CAS  Article  Google Scholar 

  21. Wegner F (1981) Bounds on the density of states in disordered systems. Z Phys B Condens Matter 44:9–15. https://doi.org/10.1007/bf01292646

    Article  Google Scholar 

  22. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 nanomaterials: a review of recent advances. Chem Eng J 343:708–736. https://doi.org/10.1016/j.cej.2018.01.069

    CAS  Article  Google Scholar 

  23. Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater 25:582–590. https://doi.org/10.1016/j.conbuildmat.2010.07.009

    Article  Google Scholar 

  24. Comission Communication from the Comission to the European the Council, European Economic and Social Commitee, Commitee of the Regions Energy (2011) Directive 2010/31/EC. European Comission

  25. Lechtenböhmer S, Schüring A (2010) The potential for large-scale savings from insulating residential buildings in the EU. Energ Effic 4:257–270. https://doi.org/10.1007/s12053-010-9090-6

    Article  Google Scholar 

  26. Santamouris M (2007) Heat island research in Europe: the state of the art. Adv Build Energy Res 1:123–150. https://doi.org/10.1080/17512549.2007.9687272

    Article  Google Scholar 

  27. Hammad F, Abu-Hijleh B (2010) The energy savings potential of using dynamic external louvers in an office building. Energy Build 42:1888–1895. https://doi.org/10.1016/j.enbuild.2010.05.024

    Article  Google Scholar 

  28. Brambilla A, Salvalai G, Imperadori M, Sesana MM (2018) Nearly zero energy building renovation: from energy efficiency to environmental efficiency, a pilot case study. Energy Build 166:271–283. https://doi.org/10.1016/j.enbuild.2018.02.002

    Article  Google Scholar 

  29. Cozza ES, Alloisio M, Comite A et al (2015) NIR-reflecting properties of new paints for energy-efficient buildings. Sol Energy 116:108–116. https://doi.org/10.1016/j.solener.2015.04.004

    Article  Google Scholar 

  30. Doulos L, Santamouris M, Livada I (2004) Passive cooling of outdoor urban spaces. Role Mater Solar Energy 77:231–249. https://doi.org/10.1016/j.solener.2004.04.005

    CAS  Article  Google Scholar 

  31. Song Z, Zhang W, Shi Y et al (2013) Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency. Energy Build 63:49–58. https://doi.org/10.1016/j.enbuild.2013.03.051

    Article  Google Scholar 

  32. Wake L (1989) Principles and Formulations of solar reflecting and low IR emitting coatings for defense use. In: Defense technical information center, Washington, DC, USA, AD-A218429

  33. Santamouris M, Synnefa A, Karlessi T (2011) Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol Energy 85:3085–3102. https://doi.org/10.1016/j.solener.2010.12.023

    Article  Google Scholar 

  34. Santamouris M, Yun GY (2020) Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renew Energy 161:792–807. https://doi.org/10.1016/j.renene.2020.07.109

    CAS  Article  Google Scholar 

  35. Jose S, Joshy D, Narendranath SB, Periyat P (2019) Recent advances in infrared reflective inorganic pigments. Sol Energy Mater Sol Cells 194:7–27. https://doi.org/10.1016/j.solmat.2019.01.037

    CAS  Article  Google Scholar 

  36. Rawat M, Singh RN (2021) A study on the comparative review of cool roof thermal performance in various regions. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2021.03.001 (in press)

  37. Falasca S, Ciancio V, Salata F et al (2019) High albedo materials to counteract heat waves in cities: an assessment of meteorology, buildings energy needs and pedestrian thermal comfort. Build Environ 163:106242. https://doi.org/10.1016/j.buildenv.2019.106242

    Article  Google Scholar 

  38. Cheela VRS, John M, Biswas W, Sarker P (2021) Combating urban heat island effect—A review of reflective pavements and tree shading strategies. Buildings 11:93. https://doi.org/10.3390/buildings11030093

    Article  Google Scholar 

  39. Hernández-Pérez I, Álvarez G, Xamán J et al (2014) Thermal performance of reflective materials applied to exterior building components—A review. Energy Build 80:81–105. https://doi.org/10.1016/j.enbuild.2014.05.008

    Article  Google Scholar 

  40. Wang C, Wang Z-H, Kaloush KE, Shacat J (2021) Cool pavements for urban heat island mitigation: a synthetic review. Renew Sustain Energy Rev 146:111171. https://doi.org/10.1016/j.rser.2021.111171

    Article  Google Scholar 

  41. Yenneti K, Ding L, Prasad D et al (2020) Urban overheating and cooling potential in Australia: An evidence-based review. Climate 8:126. https://doi.org/10.3390/cli8110126

    Article  Google Scholar 

  42. Jeevanandam P, Mulukutla RS, Phillips M et al (2007) Near infrared reflectance properties of metal oxide nanoparticles. J Phys Chem C 111:1912–1918. https://doi.org/10.1021/jp066363o

    CAS  Article  Google Scholar 

  43. Papadaki D, Kiriakidis G, Tsoutsos T (2018) Applications of nanotechnology in construction industry. In: Barhoum A, Makhlouf A (eds) Fundamentals of nanoparticles. Elsevier, Micro and Nano Technologies, pp 343–370

    Chapter  Google Scholar 

  44. von Broekhuizen F, von Broekhuizen J (2009) Nanotechnology in the European construction industry- state of the art 2009- executive summary. European federation of building and wood workers and european construction industry federation, Amsterdam

  45. Álvarez-Docio CM, Reinosa JJ, del Campo A, Fernández JF (2017) 2D particles forming a nanostructured shell: a step forward cool NIR reflectivity for CoAl2O4 pigments. Dyes Pigm 137:1–11. https://doi.org/10.1016/j.dyepig.2016.09.061

    CAS  Article  Google Scholar 

  46. Hincapié I, Künniger T, Hischier R et al (2015) Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenges. J Nanopart Res. https://doi.org/10.1007/s11051-015-3085-3

    Article  Google Scholar 

  47. Halawa E, Ghaffarianhoseini A, Ghaffarianhoseini A et al (2018) A review on energy conscious designs of building façades in hot and humid climates: lessons for (and from) Kuala Lumpur and Darwin. Renew Sustain Energy Rev 82:2147–2161. https://doi.org/10.1016/j.rser.2017.08.061

    Article  Google Scholar 

  48. Murgia C, Valles D, Ho Park Y, Kuravi S (2019) Effect of high aged albedo cool roofs on commercial buildings energy savings in U.S.A. climates. Int J Renew Energy Res 9:65–72

    Google Scholar 

  49. Synnefa A, Santamouris M, Akbari H (2007) Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build 39:1167–1174. https://doi.org/10.1016/j.enbuild.2007.01.004

    Article  Google Scholar 

  50. Revel GM, Martarelli M, Bengochea MÁ et al (2013) Nanobased coatings with improved NIR reflecting properties for building envelope materials: development and natural aging effect measurement. Cem Concr Compos 36:128–135. https://doi.org/10.1016/j.cemconcomp.2012.10.002

    CAS  Article  Google Scholar 

  51. Revel GM, Martarelli M, Emiliani M et al (2014) Cool products for building envelope – Part I: development and lab scale testing. Sol Energy 105:770–779. https://doi.org/10.1016/j.solener.2014.03.029

    Article  Google Scholar 

  52. Rossi F, Pisello AL, Nicolini A et al (2014) Analysis of retro-reflective surfaces for urban heat island mitigation: a new analytical model. Appl Energy 114:621–631. https://doi.org/10.1016/j.apenergy.2013.10.038

    Article  Google Scholar 

  53. Tao Z, Zhang W, Huang Y et al (2014) A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability. Solid State Sci 34:78–84. https://doi.org/10.1016/j.solidstatesciences.2014.05.016

    CAS  Article  Google Scholar 

  54. Pisello AL (2017) State of the art on the development of cool coatings for buildings and cities. Sol Energy 144:660–680. https://doi.org/10.1016/j.solener.2017.01.068

    CAS  Article  Google Scholar 

  55. Pisello AL, Castaldo VL, Fabiani C, Cotana F (2016) Investigation on the effect of innovative cool tiles on local indoor thermal conditions: finite element modeling and continuous monitoring. Build Environ 97:55–68. https://doi.org/10.1016/j.buildenv.2015.11.038

    Article  Google Scholar 

  56. Malz S, Krenkel W, Steffens O (2020) Infrared reflective wall paint in buildings: energy saving potentials and thermal comfort. Energy Build 224:110212. https://doi.org/10.1016/j.enbuild.2020.110212

    Article  Google Scholar 

  57. Gobakis K, Synnefa A, Meier H et al (2016) Cool roofs in the European context. REHVA J 04:19–24

    Google Scholar 

  58. Carnielo E, Zinzi M, Fanchiotti A (2014) On the solar reflectance angular dependence of opaque construction materials and impact on the energy balance of building components. Energy Proc 48:1244–1253. https://doi.org/10.1016/j.egypro.2014.02.141

    Article  Google Scholar 

  59. Zinzi M, Carnielo E, Rossi G (2015) Directional and angular response of construction materials solar properties: characterisation and assessment. Sol Energy 115:52–67. https://doi.org/10.1016/j.solener.2015.02.015

    Article  Google Scholar 

  60. Takebayashi H (2016) High-reflectance technology on building façades: installation guidelines for pedestrian comfort. Sustainability 8:785. https://doi.org/10.3390/su8080785

    Article  Google Scholar 

  61. Taha H, Sailor D, Akbari H (1992) High-albedo materials for reducing building cooling energy use. Lawrence Berkeley National Laboratory, Berkeley, CA

  62. Uemoto KL, Sato NMN, John VM (2010) Estimating thermal performance of cool colored paints. Energy Build 42:17–22. https://doi.org/10.1016/j.enbuild.2009.07.026

    Article  Google Scholar 

  63. Yuan L, Han A, Ye M et al (2018) Synthesis and characterization of environmentally benign inorganic pigments with high NIR reflectance: lanthanum-doped BiFeO3. Dyes Pigm 148:137–146. https://doi.org/10.1016/j.dyepig.2017.09.008

    CAS  Article  Google Scholar 

  64. Fang F, Kennedy J, Futter J, Manning J (2013) A review of near infrared reflectance properties of metal oxide nanostructures. GNS Sci Rep 39:23–43

    Google Scholar 

  65. Hyde D, Brannon S (2006) Investigation of infrared reflective pigmentation technologies for coatings and composite applications. In: Proceedings of the American composites manufacturers association composites and polycon. St. Louis, USA

  66. Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22. https://doi.org/10.1016/j.cej.2012.01.076

    CAS  Article  Google Scholar 

  67. Levinson R, Berdahl P, Akbari H (2005) Solar spectral optical properties of pigments—Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Sol Energy Mater Sol Cells 89:319–349. https://doi.org/10.1016/j.solmat.2004.11.012

    CAS  Article  Google Scholar 

  68. McNeil LE, French RH (2001) Light scattering from red pigment particles: multiple scattering in a strongly absorbing system. J Appl Phys 89:283–293. https://doi.org/10.1063/1.1331344

    CAS  Article  Google Scholar 

  69. Kolokotsa D, Dimitriou V, Synnefa A (2012) Modelling cool materials’ properties. In: Advances in the development of cool materials for the built environment. Bentham Science Publishers, pp 195–230

  70. Gonome H, Baneshi M, Okajima J et al (2014) Control of thermal barrier performance by optimized nanoparticle size and experimental evaluation using a solar simulator. J Quant Spectrosc Radiat Transf 149:81–89. https://doi.org/10.1016/j.jqsrt.2014.07.025

    CAS  Article  Google Scholar 

  71. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  72. Maradudin AA, Méndez ER (2007) Light scattering from randomly rough surfaces. Sci Prog 90:161–221. https://doi.org/10.3184/003685007x228711

    CAS  Article  Google Scholar 

  73. Lyu M, Lin J, Krupczak J, Shi D (2020) Light angle dependence of photothermal properties in oxide and porphyrin thin films for energy-efficient window applications. MRS Commun 10:439–448. https://doi.org/10.1557/mrc.2020.39

    CAS  Article  Google Scholar 

  74. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials part I. J Opt Soc Am 38:448. https://doi.org/10.1364/josa.38.000448

    CAS  Article  Google Scholar 

  75. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  76. Saunderson JL (1942) Calculation of the color of pigmented plastics*. J Opt Soc Am 32:727. https://doi.org/10.1364/josa.32.000727

    Article  Google Scholar 

  77. Jansen M, Letschert HP (2000) Inorganic yellow-red pigments without toxic metals. Nature 404:980–982. https://doi.org/10.1038/35010082

    CAS  Article  Google Scholar 

  78. Kiomarsipour N, Shoja Razavi R (2014) Hydrothermal synthesis of ZnO nanopigments with high UV absorption and vis/NIR reflectance. Ceram Int 40:11261–11268. https://doi.org/10.1016/j.ceramint.2014.03.178

    CAS  Article  Google Scholar 

  79. Kiomarsipour N, Shoja Razavi R, Ghani K, Kioumarsipour M (2013) Evaluation of shape and size effects on optical properties of ZnO pigment. Appl Surf Sci 270:33–38. https://doi.org/10.1016/j.apsusc.2012.11.167

    CAS  Article  Google Scholar 

  80. Nielsen R, Wilfing G (2005) Zirconium and zirconium compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–27

    Google Scholar 

  81. Levinson R, Berdahl P, Akbari H (2005) Solar spectral optical properties of pigments—Part II: survey of common colorants. Sol Energy Mater Sol Cells 89:351–389. https://doi.org/10.1016/j.solmat.2004.11.013

    CAS  Article  Google Scholar 

  82. Liang S, Zhang H, Luo M et al (2015) Preparation of Cr2O3-based pigments with high NIR reflectance via thermal decomposition of CrOOH. Trans Nonferrous Metals Soc China 25:2646–2647. https://doi.org/10.1016/s1003-6326(15)63887-0

    CAS  Article  Google Scholar 

  83. Coser E, Moritz VF, Krenzinger A, Ferreira CA (2015) Development of paints with infrared radiation reflective properties. Polímeros 25:305–310. https://doi.org/10.1590/0104-1428.1869

    Article  Google Scholar 

  84. Rong X, Jiao L, Kong X, Yuan G (2020) Research on low-brightness and high-reflective coatings suitable for buildings in tropical areas. Coatings 10:829. https://doi.org/10.3390/coatings10090829

    CAS  Article  Google Scholar 

  85. Soumya S, Mohamed AP, Mohan K, Ananthakumar S (2015) Enhanced near-infrared reflectance and functional characteristics of Al-doped ZnO nano-pigments embedded PMMA coatings. Sol Energy Mater Sol Cells 143:335–346. https://doi.org/10.1016/j.solmat.2015.07.012

    CAS  Article  Google Scholar 

  86. Zhou A, Yu Z, Chow CL, Lau D (2017) Enhanced solar spectral reflectance of thermal coatings through inorganic additives. Energy Build 138:641–647. https://doi.org/10.1016/j.enbuild.2016.12.027

    Article  Google Scholar 

  87. Jameel Z, Haider A, Taha S et al (2016) Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint. In: AIP conference proceedings, p 020001

  88. Shen L, Zhang Y, Zhang P et al (2016) Effect of TiO2 pigment gradation on the properties of thermal insulation coatings. Int J Miner Metall Mater 23:1466–1474. https://doi.org/10.1007/s12613-016-1371-4

    CAS  Article  Google Scholar 

  89. Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 114:9890–9918. https://doi.org/10.1021/cr400624r

    CAS  Article  Google Scholar 

  90. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME et al (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605. https://doi.org/10.1088/0957-4484/19/14/145605

    CAS  Article  Google Scholar 

  91. Chen X, Mao S (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891

    CAS  Article  Google Scholar 

  92. Eppler RA (1987) Effect of antimony oxide on the anatase-rutile transformation in titanium dioxide. J Am Ceram Soc 70:C64–C66. https://doi.org/10.1111/j.1151-2916.1987.tb04985.x

    Article  Google Scholar 

  93. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24:195503. https://doi.org/10.1088/0953-8984/24/19/195503

    CAS  Article  Google Scholar 

  94. Yan X, Chen X (2015) Titanium dioxide materials. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons Ltd, pp 1–38

  95. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    CAS  Article  Google Scholar 

  96. Rahimi N, Pax RA, Gray EMacA, (2016) Review of functional titanium oxides. I: TiO2 and its modifications. Prog Solid State Chem 44:86–105. https://doi.org/10.1016/j.progsolidstchem.2016.07.002

    CAS  Article  Google Scholar 

  97. Chen J, Poon C (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906. https://doi.org/10.1016/j.buildenv.2009.01.002

    Article  Google Scholar 

  98. Popov AP, Priezzhev AV, Lademann J, Myllylä R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38:2564–2570. https://doi.org/10.1088/0022-3727/38/15/006

    CAS  Article  Google Scholar 

  99. Godnjavec J, Zabret J, Znoj B et al (2014) Investigation of surface modification of rutile TiO2 nanoparticles with SiO2/Al2O3 on the properties of polyacrylic composite coating. Prog Org Coat 77:47–52. https://doi.org/10.1016/j.porgcoat.2013.08.001

    CAS  Article  Google Scholar 

  100. Kusior A, Banas J, Trenczek-Zajac A et al (2018) Structural properties of TiO2 nanomaterials. J Mol Struct 1157:327–336

    CAS  Article  Google Scholar 

  101. Song J, Qin J, Qu J et al (2014) The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol Energy Mater Sol Cells 130:42–50. https://doi.org/10.1016/j.solmat.2014.06.035

    CAS  Article  Google Scholar 

  102. Piri N, Shams-nateri A, Mokhtari J (2017) Solar spectral performance of nanopigments. Sol Energy Mater Sol Cells 162:72–82. https://doi.org/10.1016/j.solmat.2016.12.036

    CAS  Article  Google Scholar 

  103. Allen NS, Edge M, Ortega A et al (2004) Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles. Polym Degrad Stab 85:927–946. https://doi.org/10.1016/j.polymdegradstab.2003.09.024

    CAS  Article  Google Scholar 

  104. Marques J, Gomes TD, Forte MA et al (2019) A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal Today 326:36–45. https://doi.org/10.1016/j.cattod.2018.09.002

    CAS  Article  Google Scholar 

  105. Kumar S, Verma NK, Singla ML (2012) Study on reflectivity and photostability of Al-doped TiO2 nanoparticles and their reflectors. J Mater Res 28:521–528. https://doi.org/10.1557/jmr.2012.361

    CAS  Article  Google Scholar 

  106. Islam MM, Bredow T, Gerson A (2007) Electronic properties of oxygen-deficient and aluminum-doped rutileTiO2 from first principles. Phys Rev B. https://doi.org/10.1103/physrevb.76.045217

    Article  Google Scholar 

  107. Grabstanowicz LR, Gao S, Li T et al (2013) Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg Chem 52:3884–3890. https://doi.org/10.1021/ic3026182

    CAS  Article  Google Scholar 

  108. Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164. https://doi.org/10.2174/187221208786306289

    CAS  Article  Google Scholar 

  109. Mohan AC, Renjanadevi B (2016) Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Proc Technol 24:761–766. https://doi.org/10.1016/j.protcy.2016.05.078

    Article  Google Scholar 

  110. Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28:47–56. https://doi.org/10.1016/j.serj.2017.10.001

    CAS  Article  Google Scholar 

  111. Wei ZP, Lu YM, Shen DZ et al (2007) Room temperature p-n ZnO blue-violet light-emitting diodes. Appl Phys Lett 90:042113. https://doi.org/10.1063/1.2435699

    CAS  Article  Google Scholar 

  112. Osmond G (2012) Zinc white: a review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bull 33:20–29. https://doi.org/10.1179/bac.2012.33.1.004

    Article  Google Scholar 

  113. N. Jones F, E. Nichols M, Pappas SP (2017) Pigments. In: Organic coatings: science and technology, 4th edn. John Wiley & Sons, Inc., pp 417–434

  114. Clementi C, Rosi F, Romani A et al (2012) Photoluminescence properties of zinc oxide in paints: a study of the effect of self-absorption and passivation. Appl Spectrosc 66:1233–1241. https://doi.org/10.1366/12-06643

    CAS  Article  Google Scholar 

  115. de Liedekerke M (2006) Zinc Oxide (Zinc White): pigments, inorganic. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 56–60

    Google Scholar 

  116. Lv J, Tang M, Quan R, Chai Z (2019) Synthesis of solar heat-reflective ZnTiO3 pigments with novel roof cooling effect. Ceram Int 45:15768–15771. https://doi.org/10.1016/j.ceramint.2019.05.081

    CAS  Article  Google Scholar 

  117. Terki R, Bertrand G, Aourag H, Coddet C (2006) Structural and electronic properties of zirconia phases: a FP-LAPW investigations. Mater Sci Semicond Process 9:1006–1013. https://doi.org/10.1016/j.mssp.2006.10.033

    CAS  Article  Google Scholar 

  118. Han Y, Zhu J (2013) Surface science studies on the zirconia-based model. Topics Catal 56:1525–1541. https://doi.org/10.1002/chin.201349222

    CAS  Article  Google Scholar 

  119. Moles P (2017) The use of zirconium in surface coatings. In: Luxfer MEL technologies. http://www.zrchem.com/. Accessed 17 Jun 2021

  120. George G, Vishnu VS, Reddy MLP (2011) The synthesis, characterization and optical properties of silicon and praseodymium doped Y6MoO12 compounds: environmentally benign inorganic pigments with high NIR reflectance. Dyes Pigm 88:109–115. https://doi.org/10.1016/j.dyepig.2010.05.010

    CAS  Article  Google Scholar 

  121. Makhlouf SA, Bakr ZH, Al-Attar H, Moustafa MS (2013) Structural, morphological and electrical properties of Cr2O3 nanoparticles. Mater Sci Eng B 178:337–343. https://doi.org/10.1016/j.mseb.2013.01.012

    CAS  Article  Google Scholar 

  122. Zhao P, Zhao H, Yu J et al (2018) Crystal structure and properties of Al2O3–Cr2O3 solid solutions with different Cr2O3 contents. Ceram Int 44:1356–1361. https://doi.org/10.1016/j.ceramint.2017.08.195

    CAS  Article  Google Scholar 

  123. Newnham R, Hann Y (1962) Refinement of the α-A1203, Ti203, V203 and Cr203 structures. Z Kristallogr 117:235–237

    CAS  Article  Google Scholar 

  124. Santulli A, Feygenson M, Camino F et al (2011) Synthesis and characterization of one-dimensional Cr2O3 nanostructures. Chem Mater 23:1000–1008

    CAS  Article  Google Scholar 

  125. Thongkanluang T, Wutisatwongkul J, Chirakanphaisarn N, Pokaipisit A (2013) Performance of near-infrared reflective tile roofs. Adv Mater Res 770:30–33

    Article  Google Scholar 

  126. Deepak HN, Choudhari KS, Shivashankar SA et al (2019) Facile microwave-assisted synthesis of Cr2O3 nanoparticles with high near-infrared reflection for roof-top cooling applications. J Alloy Compd 785:747–753. https://doi.org/10.1016/j.jallcom.2019.01.254

    CAS  Article  Google Scholar 

  127. Thongkanluang T, Limsuwan P, Rakkwamsuk P (2011) Preparation and application of high near-infrared reflective green pigment for ceramic tile roofs. Int J Appl Ceram Technol 8:1451–1458. https://doi.org/10.1111/j.1744-7402.2010.02599.x

    CAS  Article  Google Scholar 

  128. Singh J, Verma V, Kumar R (2019) Preparation and structural, optical studies of Al substituted chromium oxide (Cr2O3) nanoparticles. Vacuum 159:282–286. https://doi.org/10.1016/j.vacuum.2018.09.033

    CAS  Article  Google Scholar 

  129. Li P, Xu H, Zhang Y et al (2009) The effects of Al and Ba on the colour performance of chromic oxide green pigment. Dyes Pigm 80:287–291. https://doi.org/10.1016/j.dyepig.2008.07.016

    CAS  Article  Google Scholar 

  130. Sangeetha S, Basha R, Sreeram KJ et al (2012) Functional pigments from chromium (III) oxide nanoparticles. Dyes Pigm 94:548–552. https://doi.org/10.1016/j.dyepig.2012.03.019

    CAS  Article  Google Scholar 

  131. Muñoz R, Masó N, Julián B et al (2004) Environmental study of Cr2O3–Al2O3 green ceramic pigment synthesis. J Eur Ceram Soc 24:2087–2094. https://doi.org/10.1016/s0955-2219(03)00360-1

    Article  Google Scholar 

  132. Elakkiya V, Abhishekram R, Sumathi S (2019) Copper doped nickel aluminate: synthesis, characterisation, optical and colour properties. Chin J Chem Eng 27:2596–2605. https://doi.org/10.1016/j.cjche.2019.01.008

    CAS  Article  Google Scholar 

  133. Karmaoui M, Silva NJO, Amaral VS et al (2013) Synthesis of cobalt aluminate nanopigments by a non-aqueous sol–gel route. Nanoscale 5:4277. https://doi.org/10.1039/c3nr34229h

    CAS  Article  Google Scholar 

  134. Dey S, Dhal GC (2019) Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: an overview. Mater Sci Energy Technol 2:575–588. https://doi.org/10.1016/j.mset.2019.06.003

    Article  Google Scholar 

  135. Paudel TR, Zakutayev A, Lany S et al (2011) Doping rules and doping prototypes in A2BO4 spinel oxides. Adv Funct Mater 21:4493–4501. https://doi.org/10.1002/adfm.201101469

    CAS  Article  Google Scholar 

  136. Ali AA, El Fadaly E, Ahmed IS (2018) Near-infrared reflecting blue inorganic nano-pigment based on cobalt aluminate spinel via combustion synthesis method. Dyes Pigm 158:451–462. https://doi.org/10.1016/j.dyepig.2018.05.058

    CAS  Article  Google Scholar 

  137. Tong Y, Zhang H, Wang S et al (2016) Highly dispersed re-doped CoAl2O4 nanopigments: synthesis and chromatic properties. J Nanomater 2016:1–7. https://doi.org/10.1155/2016/4169673

    CAS  Article  Google Scholar 

  138. Yang R, Han A, Ye M et al (2017) The influence of Mn/N-codoping on the thermal performance of ZnAl2O4 as high near-infrared reflective inorganic pigment. J Alloy Compd 696:1329–1341. https://doi.org/10.1016/j.jallcom.2016.12.100

    CAS  Article  Google Scholar 

  139. Hedayati HR, Sabbagh Alvani AA, Sameie H et al (2015) Synthesis and characterization of Co1−xZnxCr2−yAlyO4 as a near-infrared reflective color tunable nano-pigment. Dyes Pigm 113:588–595. https://doi.org/10.1016/j.dyepig.2014.09.030

    CAS  Article  Google Scholar 

  140. Menon SG, Swart HC (2020) Microwave-assisted synthesis of blue-green NiAl2O4 nanoparticle pigments with high near-infrared reflectance for indoor cooling. J Alloy Compd 819:152991. https://doi.org/10.1016/j.jallcom.2019.152991

    CAS  Article  Google Scholar 

  141. Thejus PK, Krishnapriya KV, Nishanth KG (2021) A cost-effective intense blue colour inorganic pigment for multifunctional cool roof and anticorrosive coatings. Sol Energy Mater Sol Cells 219:110778. https://doi.org/10.1016/j.solmat.2020.110778

    CAS  Article  Google Scholar 

  142. Wendusu T, Honda T, Masui T, Imanaka N (2013) Novel environmentally friendly (Bi, Ca, Zn, La) VO4 inorganic yellow pigments. RSC Adv 3:24941. https://doi.org/10.1039/c3ra43978j

    CAS  Article  Google Scholar 

  143. Ding C, Han A, Ye M et al (2018) Hydrothermal synthesis and characterization of novel yellow pigments based on V5+ doped BiPO4 with high near-infrared reflectance. RSC Adv 8:19690–19700. https://doi.org/10.1039/c8ra02406e

    CAS  Article  Google Scholar 

  144. Sandhya Kumari L, Prabhakar Rao P, Narayana Pillai Radhakrishnan A et al (2013) Brilliant yellow color and enhanced NIR reflectance of monoclinic BiVO4 through distortion in VO43− tetrahedra. Sol Energy Mater Sol Cells 112:134–143. https://doi.org/10.1016/j.solmat.2013.01.022

    CAS  Article  Google Scholar 

  145. Ianoş R, Muntean E, Păcurariu C et al (2017) Combustion synthesis of a blue Co-doped zinc aluminate near-infrared reflective pigment. Dyes Pigm 142:24–31. https://doi.org/10.1016/j.dyepig.2017.03.016

    CAS  Article  Google Scholar 

  146. Bao W, Ma F, Zhang Y et al (2016) Synthesis and characterization of Fe3+ doped Co0.5Mg0.5Al2O4 inorganic pigments with high near-infrared reflectance. Powder Technol 292:7–13. https://doi.org/10.1016/j.powtec.2016.01.013

    CAS  Article  Google Scholar 

  147. Elakkiya V, Sumathi S (2020) Ce and Fe doped gahnite: cost effective solar reflective pigment for cool coating applications. J Alloy Compd 820:153174. https://doi.org/10.1016/j.jallcom.2019.153174

    CAS  Article  Google Scholar 

  148. Merikhi J, Jungk H-O, Feldmann C (2000) Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings. J Mater Chem 10:1311–1314. https://doi.org/10.1039/a910201i

    CAS  Article  Google Scholar 

  149. Eliziário SA, de Andrade JM, Lima SJG et al (2011) Black and green pigments based on chromium–cobalt spinels. Mater Chem Phys 129:619–624. https://doi.org/10.1016/j.matchemphys.2011.05.001

    CAS  Article  Google Scholar 

  150. Yuvaraj S, Nithya VD, Fathima KS et al (2013) Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis. Mater Res Bull 48:1110–1116. https://doi.org/10.1016/j.materresbull.2012.12.001

    CAS  Article  Google Scholar 

  151. Du Y, Zhang M, Wu J et al (2003) Optical properties of SrTiO3 thin films by pulsed laser deposition. Appl Phys A 76:1105–1108

  152. Ramadass N (1978) ABO3-type oxides—Their structure and properties—A bird’s eye view. Mater Sci Eng 36:231–239. https://doi.org/10.1016/0025-5416(78)90076-9

    CAS  Article  Google Scholar 

  153. Cousin P, Ross RA (1990) Preparation of mixed oxides: a review. Mater Sci Eng A 130:119–125. https://doi.org/10.1016/0921-5093(90)90087-j

    Article  Google Scholar 

  154. Singh L, Rai US, Mandal KD, Singh NB (2014) Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog Cryst Growth Charact Mater 60:15–62. https://doi.org/10.1016/j.pcrysgrow.2014.04.001

    CAS  Article  Google Scholar 

  155. Meenakshi P, Selvaraj M (2018) Bismuth titanate as an infrared reflective pigment for cool roof coating. Sol Energy Mater Sol Cells 174:530–537. https://doi.org/10.1016/j.solmat.2017.09.048

    CAS  Article  Google Scholar 

  156. Yang R, Han A, Ye M et al (2017) Synthesis, characterization and thermal performance of Fe/N co-doped MgTiO3 as a novel high near-infrared reflective pigment. Sol Energy Mater Sol Cells 160:307–318. https://doi.org/10.1016/j.solmat.2016.10.045

    CAS  Article  Google Scholar 

  157. Sun H, Tao Y, Zhang J (2020) Magnesium titanate as a new high solar reflectance pigment to fabricate cooling engineering composites for energy saving areas. J Alloy Compd 847:156527. https://doi.org/10.1016/j.jallcom.2020.156527

    CAS  Article  Google Scholar 

  158. Moghtada A, Shahrouzianfar A, Ashiri R (2017) Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature. Dyes Pigm 139:388–396. https://doi.org/10.1016/j.dyepig.2016.12.044

    CAS  Article  Google Scholar 

  159. Wang J-L, Li Y-Q, Byon Y-J et al (2013) Synthesis and characterization of NiTiO3 yellow nano pigment with high solar radiation reflection efficiency. Powder Technol 235:303–306. https://doi.org/10.1016/j.powtec.2012.10.044

    CAS  Article  Google Scholar 

  160. Zou J, Zheng W (2016) TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceram Int 42:8198–8205. https://doi.org/10.1016/j.ceramint.2016.02.029

    CAS  Article  Google Scholar 

  161. Mao Z, Yang Z, Zhang J (2019) SrTiO3 as a new solar reflective pigment on the cooling property of PMMA-ceramic composites. Ceram Int 45:16078–16087. https://doi.org/10.1016/j.ceramint.2019.05.124

    CAS  Article  Google Scholar 

  162. Viruthagiri G, Praveen P, Mugundan S, Gopinathan E (2013) Synthesis and characterization of pure and nickel doped SrTiO3 nanoparticles via solid state reaction route. Indian J Adv Chem Sci 1:132–138

    Google Scholar 

  163. Zou J, Zhang T, He X (2019) Dark brown Cr doped CaTiO3 pigments with high NIR reflectance. Mater Lett 248:173–176. https://doi.org/10.1016/j.matlet.2019.04.031

    CAS  Article  Google Scholar 

  164. Chen Y, Ma Y, Wang Z et al (2018) Molten salt synthesis of YMnO3 powder with high near-infrared reflectivity. Mater Lett 229:171–173. https://doi.org/10.1016/j.matlet.2018.07.002

    CAS  Article  Google Scholar 

  165. Han A, Zhao M, Ye M et al (2013) Crystal structure and optical properties of YMnO3 compound with high near-infrared reflectance. Sol Energy 91:32–36. https://doi.org/10.1016/j.solener.2013.01.011

    CAS  Article  Google Scholar 

  166. Xu Z, Wang D, Zhong M, Zhang Z (2020) Preparation and characterization of Mg2+-doped CaCu3Ti4O12 pigment with high NIR reflectance. Ceram Int 46:25306–25312. https://doi.org/10.1016/j.ceramint.2020.06.324

    CAS  Article  Google Scholar 

  167. Oka R, Masui T (2016) Synthesis and characterization of black pigments based on calcium manganese oxides for high near-infrared (NIR) reflectance. RSC Adv 6:90952–90957. https://doi.org/10.1039/c6ra21443f

    CAS  Article  Google Scholar 

  168. Dohnalová Ž, Šulcová P, Bělina P (2019) Pink NIR pigment based on Cr-doped SrSnO3. J Therm Anal Calorim 138:4475–4484. https://doi.org/10.1007/s10973-019-08522-z

    CAS  Article  Google Scholar 

  169. Tian M, Han A, Ma S et al (2021) Preparation of Cr-doped BaTiO3 near infrared reflection pigment powder and its anti-aging performance for acrylonitrile-styrene-acrylate. Powder Technol 378:182–190. https://doi.org/10.1016/j.powtec.2020.09.072

    CAS  Article  Google Scholar 

  170. Li J, Lorger S, Stalick JK et al (2016) From serendipity to rational design: tuning the blue trigonal bipyramidal Mn3+chromophore to violet and purple through application of chemical pressure. Inorg Chem 55:9798–9804. https://doi.org/10.1021/acs.inorgchem.6b01639

    CAS  Article  Google Scholar 

  171. Smith AE, Comstock MC, Subramanian MA (2016) Spectral properties of the UV absorbing and near-IR reflecting blue pigment, YIn1-xMnxO3. Dyes Pigm 133:214–221. https://doi.org/10.1016/j.dyepig.2016.05.029

    CAS  Article  Google Scholar 

  172. Rosati A, Fedel M, Rossi S (2021) YIn0.9Mn0.1O3–ZnO NIR reflective nano-pigment exhibiting three different colors: ochre, cyan blue, and deep blue. J Solid State Chem 299:122176. https://doi.org/10.1016/j.jssc.2021.122176

    CAS  Article  Google Scholar 

  173. Ma Y, Chen Y, Wang Z et al (2020) Controllable near-infrared reflectivity and infrared emissivity with substitutional iron-doped orthorhombic YMnO3 coatings. Sol Energy 206:778–786. https://doi.org/10.1016/j.solener.2020.06.063

    CAS  Article  Google Scholar 

  174. Sreeram KJ, Aby CP, Nair BU, Ramasami T (2008) Colored cool colorants based on rare earth metal ions. Sol Energy Mater Sol Cells 92:1462–1467. https://doi.org/10.1016/j.solmat.2008.06.008

    CAS  Article  Google Scholar 

  175. Jovaní M, Sanz A, Beltrán-Mir H, Cordoncillo E (2016) New red-shade environmental-friendly multifunctional pigment based on Tb and Fe doped Y2Zr2O7 for ceramic applications and cool roof coatings. Dyes Pigm 133:33–40. https://doi.org/10.1016/j.dyepig.2016.05.042

    CAS  Article  Google Scholar 

  176. Raj AKV, Rao P, Sreena TS, Thara T (2019) Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments. Dyes Pigm 160:177–187. https://doi.org/10.1016/j.dyepig.2018.08.010

  177. Olegário RC, Ferreira de Souza EC, Marcelino Borges JF et al (2013) Synthesis and characterization of Fe3+ doped cerium–praseodymium oxide pigments. Dyes Pigm 97:113–117. https://doi.org/10.1016/j.dyepig.2012.12.011

    CAS  Article  Google Scholar 

  178. Jose S, Narendranath SB, Joshy D et al (2018) Low temperature synthesis of NIR reflecting bismuth doped cerium oxide yellow nano-pigments. Mater Lett 233:82–85. https://doi.org/10.1016/j.matlet.2018.08.136

    CAS  Article  Google Scholar 

  179. Farbod M, Rafati Z (2016) Color parameters of Y2Cu2O5 green-blue nanopigments fabricated by the sol-gel combustion method and their efficiency for coloring the glazed tiles. Ceram Int 42:15732–15738. https://doi.org/10.1016/j.ceramint.2016.07.033

    CAS  Article  Google Scholar 

  180. Jose S, Prakash A, Laha S et al (2014) Green colored nano-pigments derived from Y2BaCuO5: NIR reflective coatings. Dyes Pigm 107:118–126. https://doi.org/10.1016/j.dyepig.2014.03.025

    CAS  Article  Google Scholar 

  181. Těšitelová K, Šulcová P (2016) Synthesis and study of Bi2Ce2O7 as inorganic pigment. J Therm Anal Calorim 125:1047–1052. https://doi.org/10.1007/s10973-016-5322-0

    CAS  Article  Google Scholar 

  182. Xiao Y, Huang B, Chen J, Sun X (2018) Novel Bi3+ doped and Bi3+/Tb3+ co-doped LaYO3 pigments with high near-infrared reflectances. J Alloy Compd 762:873–880. https://doi.org/10.1016/j.jallcom.2018.05.233

    CAS  Article  Google Scholar 

  183. Liu L, Han A, Ye M, Zhao M (2015) Synthesis and characterization of Al3+ doped LaFeO3 compounds: a novel inorganic pigments with high near-infrared reflectance. Sol Energy Mater Sol Cells 132:377–384. https://doi.org/10.1016/j.solmat.2014.08.048

    CAS  Article  Google Scholar 

  184. Zhao M, Han A, Ye M, Wu T (2013) Preparation and characterization of Fe3+ doped Y2Ce2O7 pigments with high near-infrared reflectance. Sol Energy 97:350–355. https://doi.org/10.1016/j.solener.2013.08.007

    CAS  Article  Google Scholar 

  185. Sarasamma Vishnu V, Lakshmipathi Reddy M (2011) Near-infrared reflecting inorganic pigments based on molybdenum and praseodymium doped yttrium cerate: synthesis, characterization and optical properties. Sol Energy Mater Sol Cells 95:2685–2692. https://doi.org/10.1016/j.solmat.2011.05.042

    CAS  Article  Google Scholar 

  186. Huang B, Xiao Y, Huang C et al (2017) Environment-friendly pigments based on praseodymium and terbium doped La2Ce2O7 with high near-infrared reflectance: synthesis and characterization. Dyes Pigm 147:225–233. https://doi.org/10.1016/j.dyepig.2017.08.004

    CAS  Article  Google Scholar 

  187. Vishnu VS, George G, Reddy MLP (2010) Effect of molybdenum and praseodymium dopants on the optical properties of Sm2Ce2O7: tuning of band gaps to realize various color hues. Dyes Pigm 85:117–123. https://doi.org/10.1016/j.dyepig.2009.10.012

    CAS  Article  Google Scholar 

  188. Radhika SP, Sreeram KJ, Unni Nair B (2014) Mo-doped cerium gadolinium oxide as environmentally sustainable yellow pigments. ACS Sustain Chem Eng 2:1251–1256. https://doi.org/10.1021/sc500085m

    CAS  Article  Google Scholar 

  189. Raj AKV, Prabhakar Rao P, Sameera S, Divya S (2015) Pigments based on terbium-doped yttrium cerate with high NIR reflectance for cool roof and surface coating applications. Dyes Pigm 122:116–125. https://doi.org/10.1016/j.dyepig.2015.06.021

    CAS  Article  Google Scholar 

  190. Chen J, Xiao Y, Huang B, Sun X (2018) Sustainable cool pigments based on iron and tungsten co-doped lanthanum cerium oxide with high NIR reflectance for energy saving. Dyes Pigm 154:1–7. https://doi.org/10.1016/j.dyepig.2018.02.032

    CAS  Article  Google Scholar 

  191. Chen J, Xie W, Guo X et al (2020) Near infrared reflective pigments based on Bi3YO6 for heat insulation. Ceram Int 46:24575–24584. https://doi.org/10.1016/j.ceramint.2020.06.245

    CAS  Article  Google Scholar 

  192. Ding C, Tian M, Han A et al (2020) V-doped LaPO4 new solar heat-reflective pigments and its improvement on the aging resistance of poly-methyl methacrylate. Sol Energy 195:660–669. https://doi.org/10.1016/j.solener.2019.12.002

    CAS  Article  Google Scholar 

  193. Fortuño-Morte M, Beltrán-Mir H, Cordoncillo E (2020) Study of the role of praseodymium and iron in an environment-friendly reddish orange pigment based on Fe doped Pr2Zr2O7: a multifunctional material. J Alloy Compd 845:155841. https://doi.org/10.1016/j.jallcom.2020.155841

    CAS  Article  Google Scholar 

  194. Vishnu VS, George G, Divya V, Reddy MLP (2009) Synthesis and characterization of new environmentally benign tantalum-doped Ce0.8Zr0.2O2 yellow pigments: applications in coloring of plastics. Dyes Pigm 82:53–57. https://doi.org/10.1016/j.dyepig.2008.11.001

    CAS  Article  Google Scholar 

  195. Yao B, Geng S, Wang J, Wang L (2018) Synthesis, characterization, and optical properties of near-infrared reflecting composite inorganic pigments composed of TiO2/CuO core-shell particles. Aust J Chem 71:373. https://doi.org/10.1071/ch17626

    CAS  Article  Google Scholar 

  196. He X, Wang F, Liu H et al (2017) Fabrication of highly dispersed NiTiO3@TiO2 yellow pigments with enhanced NIR reflectance. Mater Lett 208:82–85. https://doi.org/10.1016/j.matlet.2017.05.047

    CAS  Article  Google Scholar 

  197. He X, Wang F, Liu H et al (2017) Synthesis and coloration of highly dispersed NiTiO3 @TiO2 yellow pigments with core-shell structure. J Eur Ceram Soc 37:2965–2972. https://doi.org/10.1016/j.jeurceramsoc.2017.03.020

    CAS  Article  Google Scholar 

  198. Zou J, Chen Y, Zhang P (2021) Influence of crystallite size on color properties and NIR reflectance of TiO2@NiTiO3 inorganic pigments. Ceram Int 47:12661–12666. https://doi.org/10.1016/j.ceramint.2021.01.126

    CAS  Article  Google Scholar 

  199. Sadeghi-Niaraki S, Ghasemi B, adeh AH, et al (2019) Preparation of (Fe, Cr)2O3@TiO2 cool pigments for energy saving applications. J Alloy Compd 779:367–379. https://doi.org/10.1016/j.jallcom.2018.11.114

    CAS  Article  Google Scholar 

  200. Sadeghi-Niaraki S, Ghasemi B, Habibolahzadeh A et al (2020) Cool and photocatalytic reddish-brown nanostructured Fe2O3@SiO2@TiO2 pigments. Mater Sci Eng, B 262:114752. https://doi.org/10.1016/j.mseb.2020.114752

    CAS  Article  Google Scholar 

  201. Soranakom P, Vittayakorn N, Rakkwamsuk P et al (2021) Effect of surfactant concentration on the formation of Fe2O3@SiO2 NIR-reflective red pigments. Ceram Int 47:13147–13155. https://doi.org/10.1016/j.ceramint.2021.01.179

    CAS  Article  Google Scholar 

  202. Zhang T, Wang Y, Pan Z (2019) Preparation of hollow glass microspheres@ZnS Se1− or copper-/indium-co-doped ZnS Se1− composite color pigments with enhanced near-infrared reflectance. Sol Energy 184:570–583. https://doi.org/10.1016/j.solener.2019.04.038

    CAS  Article  Google Scholar 

  203. Lu D, Gao Q, Wu X, Fan Y (2017) ZnO nanostructures decorated hollow glass microspheres as near infrared reflective pigment. Ceram Int 43:9164–9170. https://doi.org/10.1016/j.ceramint.2017.04.067

    CAS  Article  Google Scholar 

  204. Gao Q, Wu X, Fan Y, Meng Q (2018) Novel near infrared reflective pigments based on hollow glass microsphere/BiOCl1-xIx composites: optical property and superhydrophobicity. Sol Energy Mater Sol Cells 180:138–147. https://doi.org/10.1016/j.solmat.2018.02.033

    CAS  Article  Google Scholar 

  205. Gao Q, Wu X, Fan Y (2014) Solar spectral optical properties of rutile TiO2 coated mica–titania pigments. Dyes Pigm 109:90–95. https://doi.org/10.1016/j.dyepig.2014.04.028

    CAS  Article  Google Scholar 

  206. Yuan L, Han A, Ye M et al (2017) Synthesis and characterization of novel nontoxic BiFe1−xAlxO3/mica-titania pigments with high NIR reflectance. Ceram Int 43:16488–16494. https://doi.org/10.1016/j.ceramint.2017.09.032

    CAS  Article  Google Scholar 

  207. Bedon C, Honfi D, Machalická KV et al (2019) Structural characterisation of adaptive facades in Europe—Part I: insight on classification rules, performance metrics and design

  208. Ascione F, Bianco N, Iovane T et al (2021) The evolution of building energy retrofit via double-skin and responsive façades: a review. Sol Energy 224:703–717. https://doi.org/10.1016/j.solener.2021.06.035

    Article  Google Scholar 

  209. Balali A, Valipour A (2020) Identification and selection of building façade’s smart materials according to sustainable development goals. Sustain Mater Technol 26:e00213. https://doi.org/10.1016/j.susmat.2020.e00213

    Article  Google Scholar 

  210. Karlessi T, Santamouris M, Apostolakis K et al (2009) Development and testing of thermochromic coatings for buildings and urban structures. Sol Energy 83:538–551. https://doi.org/10.1016/j.solener.2008.10.005

    CAS  Article  Google Scholar 

  211. Berardi U, Garai M, Morselli T (2020) Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects. Sol Energy 209:493–504. https://doi.org/10.1016/j.solener.2020.09.015

    Article  Google Scholar 

  212. Granadeiro V, Almeida M, Souto T et al (2020) Thermochromic paints on external surfaces: impact assessment for a residential building through thermal and energy simulation. Energies 13:1912. https://doi.org/10.3390/en13081912

    Article  Google Scholar 

  213. Chang T-C, Cao X, Bao S-H et al (2018) Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. Adv Manuf 6:1–19. https://doi.org/10.1007/s40436-017-0209-2

    CAS  Article  Google Scholar 

  214. Luceño-Sánchez J, Díez-Pascual A, Peña Capilla R (2019) Materials for photovoltaics: state of art and recent developments. Int J Mol Sci 20:976. https://doi.org/10.3390/ijms20040976

    CAS  Article  Google Scholar 

  215. Joost U, Šutka A, Oja M et al (2018) Reversible photodoping of TiO2 nanoparticles for photochromic applications. Chem Mater 30:8968–8974. https://doi.org/10.1021/acs.chemmater.8b04813

    CAS  Article  Google Scholar 

  216. Wang S, Fan W, Liu Z et al (2018) Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J Mater Chem C 6:191–212. https://doi.org/10.1039/c7tc04189f

    CAS  Article  Google Scholar 

  217. Moreira MANS, Heitmann AP, Bezerra ACS et al (2020) Photocatalytic performance of cementitious materials with addition of red mud and Nb2O5 particles. Constr Build Mater 259:119851. https://doi.org/10.1016/j.conbuildmat.2020.119851

    CAS  Article  Google Scholar 

  218. Kousis I, Fabiani C, Gobbi L, Pisello AL (2020) Phosphorescent-based pavements for counteracting urban overheating – A proof of concept. Sol Energy 202:540–552. https://doi.org/10.1016/j.solener.2020.03.092

    Article  Google Scholar 

  219. Lu X, Guo S, Tong X et al (2017) Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv Mater 29:1606467. https://doi.org/10.1002/adma.201606467

    CAS  Article  Google Scholar 

  220. Fabiani C, Chiatti C, Pisello AL (2021) Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: an experimental and numerical investigation. Renew Energy 172:1–15. https://doi.org/10.1016/j.renene.2021.02.071

    Article  Google Scholar 

  221. Chiatti C, Fabiani C, Cotana F, Pisello AL (2021) Exploring the potential of photoluminescence for urban passive cooling and lighting applications: a new approach towards materials optimization. Energy 231:120815. https://doi.org/10.1016/j.energy.2021.120815

    Article  Google Scholar 

  222. Wang J, (Jialiang), Shi D, (2017) Spectral selective and photothermal nano structured thin films for energy efficient windows. Appl Energy 208:83–96. https://doi.org/10.1016/j.apenergy.2017.10.066

    CAS  Article  Google Scholar 

  223. Kulczyk-Malecka J, Kelly PJ, West G et al (2014) Investigation of silver diffusion in TiO2/Ag/TiO2 coatings. Acta Mater 66:396–404. https://doi.org/10.1016/j.actamat.2013.11.030

    CAS  Article  Google Scholar 

  224. Sahu DR, Lin S-Y, Huang J-L (2006) ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl Surf Sci 252:7509–7514. https://doi.org/10.1016/j.apsusc.2005.09.021

    CAS  Article  Google Scholar 

  225. White JR, de Poumeyrol B, Hale JM, Stephenson R (2004) Piezoelectric paint: ceramic-polymer composites for vibration sensors. J Mater Sci 39:3105–3114. https://doi.org/10.1023/b:jmsc.0000025839.98785.b9

    CAS  Article  Google Scholar 

  226. Ahmed R, Mir F, Banerjee S (2017) A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater Struct 26:085031. https://doi.org/10.1088/1361-665x/aa7bfb

    CAS  Article  Google Scholar 

  227. Gu L, Zhou D, Cao J (2016) Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors 16:833. https://doi.org/10.3390/s16060833

    CAS  Article  Google Scholar 

  228. Rodrigues C, Nunes D, Clemente D et al (2020) Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy Environ Sci 13:2657–2683. https://doi.org/10.1039/d0ee01258k

    CAS  Article  Google Scholar 

  229. Chen J, Guo H, Ding P et al (2016) Transparent triboelectric generators based on glass and polydimethylsiloxane. Nano Energy 30:235–241. https://doi.org/10.1016/j.nanoen.2016.10.005

    CAS  Article  Google Scholar 

  230. Wang J, Meng C, Gu Q et al (2020) Normally transparent tribo-induced smart window. ACS Nano 14:3630–3639. https://doi.org/10.1021/acsnano.0c00107

    CAS  Article  Google Scholar 

  231. Akeiber H, Nejat P, Majid MZAbd, et al (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497. https://doi.org/10.1016/j.rser.2016.03.036

    Article  Google Scholar 

  232. Cheng X, Zhai X, Wang R (2016) Thermal performance analysis of a packed bed cold storage unit using composite PCM capsules for high temperature solar cooling application. Appl Therm Eng 100:247–255. https://doi.org/10.1016/j.applthermaleng.2016.02.036

    CAS  Article  Google Scholar 

  233. Chung MH, Park JC (2016) Development of PCM cool roof system to control urban heat island considering temperate climatic conditions. Energy Build 116:341–348. https://doi.org/10.1016/j.enbuild.2015.12.056

    Article  Google Scholar 

  234. Lei J, Kumarasamy K, Zingre KT et al (2017) Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics. Appl Energy 190:57–63. https://doi.org/10.1016/j.apenergy.2016.12.114

    Article  Google Scholar 

  235. Cannavale A, Ayr U, Fiorito F, Martellotta F (2020) Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies 13:1449. https://doi.org/10.3390/en13061449

    CAS  Article  Google Scholar 

  236. Tavares PF, Gaspar AR, Martins AG, Frontini F (2014) Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates. Energy Policy 67:68–81. https://doi.org/10.1016/j.enpol.2013.07.038

    Article  Google Scholar 

  237. Jelle BP, Gao T (2015) The utilization of electrochromic materials for smart window applications in energy-efficient buildings. In: Proceedings of Techconnect world innovation

  238. Nishizawa K, Yamada Y, Yoshimura K (2017) Low-temperature chemical fabrication of Pt-WO 3 gasochromic switchable films using UV irradiation. Sol Energy Mater Sol Cells 170:21–26. https://doi.org/10.1016/j.solmat.2017.05.058

    CAS  Article  Google Scholar 

  239. Zahir MdH, Mohamed SA, Saidur R, Al-Sulaiman FA (2019) Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy 240:793–817. https://doi.org/10.1016/j.apenergy.2019.02.045

    CAS  Article  Google Scholar 

  240. Cannavale A (2020) Chromogenic technologies for energy saving. Clean Technol 2:462–475. https://doi.org/10.3390/cleantechnol2040029

    Article  Google Scholar 

  241. Piccolo A, Marino C, Nucara A, Pietrafesa M (2018) Energy performance of an electrochromic switchable glazing: experimental and computational assessments. Energy Build 165:390–398. https://doi.org/10.1016/j.enbuild.2017.12.049

    Article  Google Scholar 

  242. Lin Y-J, Chang Y-H, Yang W-D, Tsai B-S (2006) Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non Cryst Solids 352:789–794. https://doi.org/10.1016/j.jnoncrysol.2006.02.001

    CAS  Article  Google Scholar 

  243. Sakka S (2013) Sol–gel process and applications. In: Handbook of advanced ceramics, 2nd edn. Academic Press, pp 883–910

  244. Yu Y-H, Xia M (2012) Preparation and characterization of ZnTiO3 powders by sol–gel process. Mater Lett 77:10–12. https://doi.org/10.1016/j.matlet.2012.02.113

    CAS  Article  Google Scholar 

  245. Brinker C (1990) Sol-gel science. The physics and chemistry of sol-gel processing. Academic Press, USA, pp xvi–18

    Google Scholar 

  246. Spooren J, Walton RI (2005) Hydrothermal synthesis of the perovskite manganites Pr0.5Sr0.5MnO3 and Nd0.5Sr0.5MnO3 and alkali-earth manganese oxides CaMn2O4, 4H-SrMnO3, and 2H-BaMnO3. J Solid State Chem 178:1683–1691. https://doi.org/10.1016/j.jssc.2005.03.006

    CAS  Article  Google Scholar 

  247. Xia C-T, Shi E-W, Zhong W-Z, Guo J-K (1996) Hydrothermal synthesis of BaTiO3 nano/microcrystals. J Cryst Growth 166:961–966. https://doi.org/10.1016/0022-0248(95)00521-8

    CAS  Article  Google Scholar 

  248. Xue P, Hu Y, Xia W et al (2017) Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization. J Alloy Compd 695:2870–2877. https://doi.org/10.1016/j.jallcom.2016.11.395

    CAS  Article  Google Scholar 

  249. Xing X, Zhang C, Qiao L et al (2006) Facile preparation of ZnTiO3 ceramic powders in sodium/potassium chloride melts. J Am Ceram Soc 89:1150–1152. https://doi.org/10.1111/j.1551-2916.2005.00853.x

    CAS  Article  Google Scholar 

  250. Pholnak C, Sirisathitkul C, Danworaphong S, Harding DJ (2013) Sonochemical synthesis of zinc oxide nanoparticles using an ultrasonic homogenizer. Ferroelectrics 455:15–20. https://doi.org/10.1080/00150193.2013.843405

    CAS  Article  Google Scholar 

  251. Hassanjani-Roshan A, Vaezi MR, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9:95–99. https://doi.org/10.1016/j.partic.2010.05.013

    CAS  Article  Google Scholar 

  252. Mason TJ, Lorimer JP (2002) Introduction to applied ultrasonics. Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley-VCH Verlag GmbH & Co. KGaA, UK, pp 20–21

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by project Project PTDC/ECI-CON/28766/2017—POCI-01-0145-FEDER-028766—funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES, project Circular2B - 37_CALL#2 - Circular Construction in Energy-Efficient Modular Buildings funded by EEA Grants and by Base Funding—UIDB/04708/2020 of the CONSTRUCT—Instituto de I&D em Estruturas e Construções—funded by national funds through the FCT/MCTES (PIDDAC). R. C. Veloso and A. Souza would like to acknowledge the support of FCT—Fundação para a Ciência e Tecnologia for the funding the doctoral grant SFRH/BD/148785/2019 and DFA/BD/8418/2020, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Carvalho Veloso.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests regarding the publication of this article.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veloso, R.C., Souza, A., Maia, J. et al. Nanomaterials with high solar reflectance as an emerging path towards energy-efficient envelope systems: a review. J Mater Sci 56, 19791–19839 (2021). https://doi.org/10.1007/s10853-021-06560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06560-3