Skip to main content

Advertisement

Log in

Fabrication of antioxidative and antibacterial surface coatings with metformin-loaded self-assembled multilayers for periodontal regeneration in diabetes mellitus patients

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rescuing the compromised function of periodontal ligament stem cells (PDLSCs) due to hyperglycemia-induced oxidative stress and reducing the risk of postoperative infection around the interface of scaffold materials are of prime importance for periodontal regeneration in diabetes mellitus. To this end, a facile and green approach for the establishment of surfaces with antioxidative and antibacterial properties was developed in this work. Briefly, the surfaces of polystyrene (PS) plate were pre-modified with polydopamine and then coated with a genipin crosslinked layer-by-layer (LbL) assembly, which was established by using the antibacterial polyelectrolytes carboxymethyl chitosan (CMC) and polylysine (PLL) as building block. Metformin as an antioxidative agent was incorporated into the discrete nanolayers to achieve sustainable release. Our research showed that metformin-loaded LbL assembly presented favorable cytocompatibility. The released metformin could partially rescue the impaired osteogenic function of human PDLSCs induced by high glucose in vitro. Meanwhile, owing to the antibacterial activity of CMC and PLL, the colonization of common pathogenic bacteria related to periodontal disease could be disturbed on the surface of developed coatings. Accordingly, the presented strategy for surface functionalization of materials in our study holds a promising potential for periodontal regeneration application in diabetic patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Preshaw P, Bissett S (2013) Periodontitis: oral complication of diabetes. Endocrinol Metab Clin North Am 42(4):849–867. https://doi.org/10.1016/j.ecl.2013.05.012

    Article  Google Scholar 

  2. Bottino M, Thomas V (2015) Membranes for periodontal regeneration–a materials perspective. Front Oral Biol 17:90–100. https://doi.org/10.1159/000381699

    Article  Google Scholar 

  3. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M (2017) Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 21:9. https://doi.org/10.1186/s40824-017-0095-5

    Article  CAS  Google Scholar 

  4. Zheng D, Han Z, Wang X, Ma D, Zhang J (2019) Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs). Chem Biol Interact 305:40–47. https://doi.org/10.1016/j.cbi.2019.03.007

    Article  CAS  Google Scholar 

  5. Lalla E, Papapanou P (2011) Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 7(12):738–748. https://doi.org/10.1038/nrendo.2011.106

    Article  CAS  Google Scholar 

  6. Shin H, Lee C, Cho I, Kim Y, Lee Y, Kim I, Park K, Yui N, Shin J (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17:103–119. https://doi.org/10.1163/156856206774879126

    Article  CAS  Google Scholar 

  7. Xiao E, Mattos M, Vieira G, Chen S, Corrêa J, Wu Y, Albiero M, Bittinger K, Graves D (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22(1):120-128.e124. https://doi.org/10.1016/j.chom.2017.06.014

    Article  CAS  Google Scholar 

  8. Vieira Colombo A, Magalhães C, Hartenbach F, Martins DSR, Maciel da Silva-Boghossian C (2016) Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microbial Pathog 94:27–34. https://doi.org/10.1016/j.micpath.2015.09.009

    Article  CAS  Google Scholar 

  9. Guvener M, Pasaoglu I, Demircin M, Oc M (2002) Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr J 49(5):531–537. https://doi.org/10.1507/endocrj.49.531

    Article  Google Scholar 

  10. Askar H, Di Gianfilippo R, Ravida A, Tattan M, Majzoub J, Wang H (2019) Incidence and severity of postoperative complications following oral, periodontal, and implant surgeries: a retrospective study. J Periodontol 90(11):1270–1278. https://doi.org/10.1002/jper.18-0658

    Article  Google Scholar 

  11. Sanchez-Rangel E, Inzucchi SE (2017) Metformin: clinical use in type 2 diabetes. Diabetologia 60(9):1586–1593. https://doi.org/10.1007/s00125-017-4336-x

    Article  CAS  Google Scholar 

  12. Bailey CJ (2017) Metformin: historical overview. Diabetologia 60(9):1566–1576. https://doi.org/10.1007/s00125-017-4318-z

    Article  CAS  Google Scholar 

  13. Food and Drug Administration (2021) Approved drug products with therapeutic equivalence evaluations 41st edition (Orange Book). https://www.fda.gov/media/71474/download. Accessed 5 August 2021

  14. Kuang Y, Hu B, Feng G, Xiang M, Deng Y, Tan M, Li J, Song J (2020) Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells. Biogerontology 21(1):13–27. https://doi.org/10.1007/s10522-019-09838-x

    Article  CAS  Google Scholar 

  15. Zhang R, Liang Q, Kang W, Ge S (2019) Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro. Cell Biol Int. https://doi.org/10.1002/cbin.11202

    Article  Google Scholar 

  16. Bak EJ, Park HG, Kim M, Kim SW, Kim S, Choi SH, Cha JH, Yoo YJ (2010) The effect of metformin on alveolar bone in ligature-induced periodontitis in rats: a pilot study. J Periodontol 81(3):412–419. https://doi.org/10.1902/jop.2009.090414

    Article  CAS  Google Scholar 

  17. Jia L, Xiong Y, Zhang W, Ma X, Xu X (2020) Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res 386(2):111717. https://doi.org/10.1016/j.yexcr.2019.111717

    Article  CAS  Google Scholar 

  18. Araújo AA, Pereira A, Medeiros C, Brito GAC, Leitão RFC, Araújo LS, Guedes PMM, Hiyari S, Pirih FQ, Araújo Júnior RF (2017) Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE 12(8):e0183506. https://doi.org/10.1371/journal.pone.0183506

    Article  CAS  Google Scholar 

  19. Zhao J, Yue W, Zhu MJ, Sreejayan N, Du M (2010) AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun 395(1):146–151. https://doi.org/10.1016/j.bbrc.2010.03.161

    Article  CAS  Google Scholar 

  20. Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47(5):926–937. https://doi.org/10.1016/j.bone.2010.08.001

    Article  CAS  Google Scholar 

  21. Lamster IB, Lalla E, Borgnakke WS, Taylor GW (2008) The relationship between oral health and diabetes mellitus. J Am Dent Assoc 139(Suppl):19s–24s. https://doi.org/10.14219/jada.archive.2008.0363

    Article  Google Scholar 

  22. Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65(3):385–411. https://doi.org/10.2165/00003495-200565030-00005

    Article  CAS  Google Scholar 

  23. Lazarus B, Wu A, Shin JI, Sang Y, Alexander GC, Secora A, Inker LA, Coresh J, Chang AR, Grams ME (2018) Association of metformin use with risk of lactic acidosis across the range of kidney function: a community-based cohort study. JAMA Intern Med 178(7):903–910. https://doi.org/10.1001/jamainternmed.2018.0292

    Article  Google Scholar 

  24. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122(6):253–270. https://doi.org/10.1042/cs20110386

    Article  CAS  Google Scholar 

  25. Andrzejewski S, Gravel SP, Pollak M, St-Pierre J (2014) Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2:12. https://doi.org/10.1186/2049-3002-2-12

    Article  Google Scholar 

  26. Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H (2019) An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 86:235–246. https://doi.org/10.1016/j.actbio.2019.01.001

    Article  CAS  Google Scholar 

  27. Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, Luo Z, Sui Y, Zhang S, Wang L, Ni Y, Zhang L, Wei S (2019) Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials 212:98–114. https://doi.org/10.1016/j.biomaterials.2019.05.014

    Article  CAS  Google Scholar 

  28. Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V (2018) Polymeric materials and films in dentistry: an overview. J Adv Res 14:25–34. https://doi.org/10.1016/j.jare.2018.05.001

    Article  CAS  Google Scholar 

  29. Ding S, Kingshott P, Thissen H, Pera M, Wang PY (2017) Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: a review. Biotechnol Bioeng 114(2):260–280. https://doi.org/10.1002/bit.26075

    Article  CAS  Google Scholar 

  30. Abdulghani S, Mitchell GR (2019) Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 9 (11). doi:https://doi.org/10.3390/biom9110750

  31. Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, Xiao Q, Liu J, Ramakrishna S, He L (2019) Advances in injectable self-healing biomedical hydrogels. Acta Biomater 90:1–20. https://doi.org/10.1016/j.actbio.2019.03.057

    Article  CAS  Google Scholar 

  32. Wohl BM, Engbersen JF (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14. https://doi.org/10.1016/j.jconrel.2011.08.035

    Article  CAS  Google Scholar 

  33. Richardson JJ, Björnmalm M, Caruso F (2015) Multilayer assembly Technology-driven layer-by-layer assembly of nanofilms. Science. https://doi.org/10.1126/science.aaa2491

    Article  Google Scholar 

  34. Crouzier T, Ren K, Nicolas C, Roy C, Picart C (2009) Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: controlled differentiation of myoblasts to osteoblasts. Small 5(5):598–608. https://doi.org/10.1002/smll.200800804

    Article  CAS  Google Scholar 

  35. Valverde A, Pérez-Álvarez L, Ruiz-Rubio L, Pacha Olivenza MA, García Blanco MB, Díaz-Fuentes M, Vilas-Vilela JL (2019) Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces. Carbohydr Polym 207:824–833. https://doi.org/10.1016/j.carbpol.2018.12.039

    Article  CAS  Google Scholar 

  36. Cao M, Zhao W, Wang L, Li R, Gong H, Zhang Y, Xu H, Lu JR (2018) Graphene oxide-assisted accumulation and layer-by-layer assembly of antibacterial peptide for sustained release applications. ACS Appl Mater Interfaces 10(29):24937–24946. https://doi.org/10.1021/acsami.8b07417

    Article  CAS  Google Scholar 

  37. Uppu D, Turvey ME, Sharif ARM, Bidet K, He Y, Ho V, Tambe AD, Lescar J, Tan EY, Fink K, Chen J, Hammond PT (2020) Temporal release of a three-component protein subunit vaccine from polymer multilayers. J Control Rel 317:130–141. https://doi.org/10.1016/j.jconrel.2019.11.022

    Article  CAS  Google Scholar 

  38. Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KC-W, Hill JP (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43(1):36–68. https://doi.org/10.1246/cl.130987

    Article  CAS  Google Scholar 

  39. Zhou P, Wu F, Zhou T, Cai X, Zhang S, Zhang X, Li Q, Li Y, Zheng Y, Wang M, Lan F, Pan G, Pei D, Wei S (2016) Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials 87:1–17. https://doi.org/10.1016/j.biomaterials.2016.02.012

    Article  CAS  Google Scholar 

  40. Waite JH (2008) Mussel power. Nat Mater 7(1):8–9. https://doi.org/10.1038/nmat2087

    Article  CAS  Google Scholar 

  41. Upadhyaya L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 91(1):452–466. https://doi.org/10.1016/j.carbpol.2012.07.076

    Article  CAS  Google Scholar 

  42. Shi C, He Y, Feng X, Fu D (2015) ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. J Biomater Sci Polym Ed 26(18):1343–1356. https://doi.org/10.1080/09205063.2015.1095023

    Article  CAS  Google Scholar 

  43. Pan Y, Liu L, Zhang Y, Song L, Hu Y, Jiang S, Zhao H (2019) Effect of genipin crosslinked layer-by-layer self-assembled coating on the thermal stability, flammability and wash durability of cotton fabric. Carbohydr Polym 206:396–402. https://doi.org/10.1016/j.carbpol.2018.11.037

    Article  CAS  Google Scholar 

  44. Zhang L, Yang W, Tao K, Song Y, Xie H, Wang J, Li X, Shuai X, Gao J, Chang P, Wang G, Wang Z, Wang L (2017) Sustained local release of ngf from a chitosan-sericin composite scaffold for treating chronic nerve compression. ACS Appl Mater Interf 9(4):3432–3444. https://doi.org/10.1021/acsami.6b14691

    Article  CAS  Google Scholar 

  45. De Clercq K, Schelfhout C, Bracke M, De Wever O, Van Bockstal M, Ceelen W, Remon JP, Vervaet C (2016) Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Biomaterials 96:33–46. https://doi.org/10.1016/j.biomaterials.2016.04.012

    Article  CAS  Google Scholar 

  46. Martínez-Gómez F, Guerrero J, Matsuhiro B, Pavez J (2017) In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohydr Polym 155:182–191. https://doi.org/10.1016/j.carbpol.2016.08.079

    Article  CAS  Google Scholar 

  47. Deng Y, Yang Y, Wei S (2017) Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells. Biomacromol 18(2):587–598. https://doi.org/10.1021/acs.biomac.6b01748

    Article  CAS  Google Scholar 

  48. Cui X, Yang S, Yan X, Leng J, Shuang S, Ajayan PM, Zhang Z (2016) Pyridinic-nitrogen-dominated graphene aerogels with Fe–N–C coordination for highly efficient oxygen reduction reaction. Adv Funct Mater 26(31):5708–5717. https://doi.org/10.1002/adfm.201601492

    Article  CAS  Google Scholar 

  49. Cetin M, Sahin S (2016) Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv 23(8):2796–2805. https://doi.org/10.3109/10717544.2015.1089957

    Article  CAS  Google Scholar 

  50. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S (2014) Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 35(25):6758–6775. https://doi.org/10.1016/j.biomaterials.2014.04.085

    Article  CAS  Google Scholar 

  51. Li M, Yu Y, Shi Y, Zhou Y, Zhang W, Hua H, Ge J, Zhang Z, Ye D, Yang C, Wang S (2020) Decreased osteogenic ability of periodontal ligament stem cells leading to impaired periodontal tissue repair in bronj patients. Stem Cells Dev 29(3):156–168. https://doi.org/10.1089/scd.2019.0151

    Article  CAS  Google Scholar 

  52. Xiang M, Zhu M, Yang Z, He P, Wei J, Gao X, Song J (2020) Dual-functionalized apatite nanocomposites with enhanced cytocompatibility and osteogenesis for periodontal bone regeneration. ACS Biomater Sci Eng 6(3):1704–1714. https://doi.org/10.1021/acsbiomaterials.9b01893

    Article  CAS  Google Scholar 

  53. Morgan DM, Larvin VL, Pearson JD (1989) Biochemical characterisation of polycation-induced cytotoxicity to human vascular endothelial cells. J Cell Sci 94(Pt 3):553–559

    Article  CAS  Google Scholar 

  54. Kadlecova Z, Baldi L, Hacker D, Wurm FM, Klok HA (2012) Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromol 13(10):3127–3137. https://doi.org/10.1021/bm300930j

    Article  CAS  Google Scholar 

  55. Guo Z, Xing R, Liu S, Yu H, Wang P, Li C, Li P (2005) The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorg Med Chem Lett 15(20):4600–4603. https://doi.org/10.1016/j.bmcl.2005.06.095

    Article  CAS  Google Scholar 

  56. Shi C, Zhao X, Liu Z, Meng R, Chen X, Guo N (2016) Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr Res 60:31891. https://doi.org/10.3402/fnr.v60.31891

    Article  CAS  Google Scholar 

  57. Luo Z, Zhang S, Pan J, Shi R, Liu H, Lyu Y, Han X, Li Y, Yang Y, Xu Z, Sui Y, Luo E, Zhang Y, Wei S (2018) Time-responsive osteogenic niche of stem cells: A sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials 163:25–42. https://doi.org/10.1016/j.biomaterials.2018.02.025

    Article  CAS  Google Scholar 

  58. Huang X, Chen X, Chen H, Xu D, Lin C, Peng B (2018) Rho/Rho-associated protein kinase signaling pathway-mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts. Exp Ther Med 15(5):4457–4464. https://doi.org/10.3892/etm.2018.5982

    Article  CAS  Google Scholar 

  59. Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ (2017) Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev 23(3):268–280. https://doi.org/10.1089/ten.TEB.2016.0454

    Article  CAS  Google Scholar 

  60. Daniluk T, Fiedoruk K, Sciepuk M, Zaremba ML, Rozkiewicz D, Cylwik-Rokicka D, Tokajuk G, Kedra BA, Anielska I, Stokowska W, Górska M, Kedra BR (2006) Aerobic bacteria in the oral cavity of patients with removable dentures. Adv Med Sci 51(Suppl 1):86–90

    Google Scholar 

  61. Chung J, Ha ES, Park HR, Kim S (2004) Isolation and characterization of Lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Microbiol Immunol 19(3):214–216. https://doi.org/10.1111/j.0902-0055.2004.00137.x

    Article  CAS  Google Scholar 

  62. Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15. https://doi.org/10.1111/j.1600-051X.2005.00790.x

    Article  CAS  Google Scholar 

  63. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. https://doi.org/10.1002/1097-4636(20001215)52:4%3c662::aid-jbm10%3e3.0.co;2-3

    Article  CAS  Google Scholar 

  64. Mohamed NA, Sabaa MW, El-Ghandour AH, Abdel-Aziz MM, Abdel-Gawad OF (2013) Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int J Biol Macromol 60:156–164. https://doi.org/10.1016/j.ijbiomac.2013.05.022

    Article  CAS  Google Scholar 

  65. Liu H, Pei H, Han Z, Feng G, Li D (2015) The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis. Food Control 47:444–450. https://doi.org/10.1016/j.foodcont.2014.07.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0219), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN201900427), The general financial grant from the China Postdoctoral Science Foundation (No. 2019M663893XB) and Chongqing Postdoctoral Science Foundation (X11229), Chongqing municipal Health Commission Program (2020MSXM129, 2020GDRC002), Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Chongqing Graduate Tutor Team (dstd201903).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Wenjie Zhong or Jinlin Song.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Cong, X., Wang, Y. et al. Fabrication of antioxidative and antibacterial surface coatings with metformin-loaded self-assembled multilayers for periodontal regeneration in diabetes mellitus patients. J Mater Sci 56, 18668–18683 (2021). https://doi.org/10.1007/s10853-021-06533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06533-6

Navigation