Skip to main content

Advertisement

Log in

Design of polymers for energy storage capacitors using machine learning and evolutionary algorithms

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To meet the demands of emerging electrification technologies, polymers that are capable of withstanding high electric fields at high temperatures are needed. Given the staggeringly large search space of polymers, traditional, intuition- and experience-based Edisonian approaches are too slow at discovering new polymers that can meet these demands. In this work, a genetic algorithm was combined with five machine learning-based property predictors to design over 50,000 hypothetical polymers that achieve target properties. Additionally, a polymer synthesizability-based criterion was used to narrow these polymers down to 23 candidates likely to be synthesizable and 3665 that may be synthesizable. A version of the genetic algorithm code is also made available for public use on GitHub.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Code availability

A modified version of the genetic algorithm is available at: https://github.com/Ramprasad-Group/polyga

References

  1. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30:1939–1942. https://doi.org/10.1109/TPS.2002.805318

    Article  CAS  Google Scholar 

  2. Qin S, Ma S, Boggs SA (2012) The mechanism of clearing in metalized film capacitors. In: 2012 IEEE international symposium on electrical insulation. IEEE, San Juan, PR, USA, pp 592–595

  3. Reed CW, Cichanowskil SW (1994) The fundamentals of aging in HV polymer-film capacitors. IEEE Trans Dielect Electr Insul 1:904–922. https://doi.org/10.1109/94.326658

    Article  CAS  Google Scholar 

  4. Zhou Y, Wang Q (2020) Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 127:240902. https://doi.org/10.1063/5.0009650

    Article  CAS  Google Scholar 

  5. Johnson RW, Evans JL, Jacobsen P et al (2004) The changing automotive environment: high-temperature electronics. IEEE Trans Electron Packag Manufact 27:164–176. https://doi.org/10.1109/TEPM.2004.843109

    Article  Google Scholar 

  6. Ho JS, Greenbaum SG (2018) Polymer capacitor dielectrics for high temperature applications. ACS Appl Mater Interfaces 10:29189–29218. https://doi.org/10.1021/acsami.8b07705

    Article  CAS  Google Scholar 

  7. Qiao Y, Yin X, Zhu T et al (2018) Dielectric polymers with novel chemistry, compositions and architectures. Prog Polym Sci 80:153–162. https://doi.org/10.1016/j.progpolymsci.2018.01.003

    Article  CAS  Google Scholar 

  8. Venkat N, Dang TD, Bai Z et al (2010) High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mater Sci Eng B 168:16–21. https://doi.org/10.1016/j.mseb.2009.12.038

    Article  CAS  Google Scholar 

  9. Wang CC, Pilania G, Boggs SA et al (2014) Computational strategies for polymer dielectrics design. Polymer 55:979–988. https://doi.org/10.1016/j.polymer.2013.12.069

    Article  CAS  Google Scholar 

  10. Huan TD, Boggs S, Teyssedre G et al (2016) Advanced polymeric dielectrics for high energy density applications. Prog Mater Sci 83:236–269. https://doi.org/10.1016/j.pmatsci.2016.05.001

    Article  CAS  Google Scholar 

  11. Kim C, Chandrasekaran A, Huan TD et al (2018) Polymer genome: a data-powered polymer informatics platform for property predictions. J Phys Chem C 122:17575–17585. https://doi.org/10.1021/acs.jpcc.8b02913

    Article  CAS  Google Scholar 

  12. Batra R, Song L, Ramprasad R (2020) Emerging materials intelligence ecosystems propelled by machine learning. Nat Rev Mater 6:655–678. https://doi.org/10.1038/s41578-020-00255-y

    Article  Google Scholar 

  13. Venkatasubramanian V, Chan K, Caruthers JM (1995) Evolutionary design of molecules with desired properties using the genetic algorithm. J Chem Inf Model 35:188–195. https://doi.org/10.1021/ci00024a003

    Article  CAS  Google Scholar 

  14. Kim C, Batra R, Chen L et al (2021) Polymer design using genetic algorithm and machine learning. Comput Mater Sci 186:110067. https://doi.org/10.1016/j.commatsci.2020.110067

    Article  CAS  Google Scholar 

  15. Verhellen J, Van den Abeele J (2020) Illuminating elite patches of chemical space. Chem Sci 11:11485–11491. https://doi.org/10.1039/D0SC03544K

    Article  CAS  Google Scholar 

  16. Berardo E, Turcani L, Miklitz M, Jelfs KE (2018) An evolutionary algorithm for the discovery of porous organic cages. Chem Sci 9:8513–8527. https://doi.org/10.1039/C8SC03560A

    Article  CAS  Google Scholar 

  17. Sheridan RP, Kearsley SK (1995) Using a genetic algorithm to suggest combinatorial libraries. J Chem Inf Model 35:310–320. https://doi.org/10.1021/ci00024a021

    Article  CAS  Google Scholar 

  18. Mannodi-Kanakkithodi A, Chandrasekaran A, Kim C et al (2018) Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater Today 21:785–796. https://doi.org/10.1016/j.mattod.2017.11.021

    Article  CAS  Google Scholar 

  19. Kamal D, Tran H, Kim C et al (2021) Novel high voltage polymer insulators using computational and data-driven techniques. J Chem Phys 154:174906. https://doi.org/10.1063/5.0044306

    Article  CAS  Google Scholar 

  20. Sharma V, Wang C, Lorenzini RG et al (2014) Rational design of all organic polymer dielectrics. Nat Commun 5:4845. https://doi.org/10.1038/ncomms5845

    Article  CAS  Google Scholar 

  21. Zeng Q, Oganov AR, Lyakhov AO et al (2014) Evolutionary search for new high-k dielectric materials: methodology and applications to hafnia-based oxides. Acta Crystallogr C Struct Chem 70:76–84. https://doi.org/10.1107/S2053229613027861

    Article  CAS  Google Scholar 

  22. Sun Y, Boggs SA, Ramprasad R (2012) The intrinsic electrical breakdown strength of insulators from first principles. Appl Phys Lett 101:132906. https://doi.org/10.1063/1.4755841

    Article  CAS  Google Scholar 

  23. Hou Y, Zhang J, Zhang Z (2016) Significantly improved breakdown performances of propylene carbonate-based nano-fluids. Micro Nano Letters 11:490–493. https://doi.org/10.1049/mnl.2016.0214

    Article  CAS  Google Scholar 

  24. Chen L, Huan TD, Quintero YC, Ramprasad R (2016) Charge injection barriers at metal/polyethylene interfaces. J Mater Sci 51:506–512. https://doi.org/10.1007/s10853-015-9369-2

    Article  CAS  Google Scholar 

  25. Tan Q, Irwin P, Cao Y (2006) Advanced dielectrics for capacitors. IEEJ TransFM 126:1153–1159. https://doi.org/10.1541/ieejfms.126.1153

    Article  Google Scholar 

  26. Chu B (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336. https://doi.org/10.1126/science.1127798

    Article  CAS  Google Scholar 

  27. Chen L, Kern J, Lightstone JP, Ramprasad R (2021) Data-assisted polymer retrosynthesis planning. Appl Phys Rev 8:031405. https://doi.org/10.1063/5.0052962

    Article  CAS  Google Scholar 

  28. Chen L, Kim C, Batra R et al (2020) Frequency-dependent dielectric constant prediction of polymers using machine learning. npj Comput Mater 6:61. https://doi.org/10.1038/s41524-020-0333-6

    Article  CAS  Google Scholar 

  29. Doan Tran H, Kim C, Chen L et al (2020) Machine-learning predictions of polymer properties with Polymer Genome. J Appl Phys 128:171104. https://doi.org/10.1063/5.0023759

    Article  CAS  Google Scholar 

  30. Cassar DR, Santos GG, Zanotto ED (2021) Designing optical glasses by machine learning coupled with a genetic algorithm. Ceram Int 47:10555–10564. https://doi.org/10.1016/j.ceramint.2020.12.167

    Article  CAS  Google Scholar 

  31. Mallik S, Mallik K, Barman A et al (2017) Efficiency and cost optimized design of an induction motor using genetic algorithm. IEEE Trans Ind Electron 64:9854–9863. https://doi.org/10.1109/TIE.2017.2703687

    Article  Google Scholar 

  32. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126. https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  33. Gao G, Zheng F, Pan F, Wang L (2018) Theoretical investigation of 2D conductive microporous coordination polymers as Li–S battery cathode with ultrahigh energy density. Adv Energy Mater 8:1801823. https://doi.org/10.1002/aenm.201801823

    Article  CAS  Google Scholar 

  34. Yang X-S (2014) Genetic algorithms. In: Nature-inspired optimization algorithms. Elsevier, pp 77–87. https://doi.org/10.1016/B978-0-12-416743-8.00005-1

  35. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and using “drug-like” chemical fragment spaces. ChemMedChem 3:1503–1507. https://doi.org/10.1002/cmdc.200800178

    Article  CAS  Google Scholar 

  36. O’Boyle NM (2012) Towards a Universal SMILES representation—a standard method to generate canonical SMILES based on the InChI. J Cheminform 4:22. https://doi.org/10.1186/1758-2946-4-22

    Article  CAS  Google Scholar 

  37. McCall J (2005) Genetic algorithms for modelling and optimisation. J Comput Appl Math 184:205–222. https://doi.org/10.1016/j.cam.2004.07.034

    Article  Google Scholar 

  38. McInnes L, Healy J, Melville J (2020) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:180203426 [cs, stat]

  39. Reaxys. https://www.reaxys.com/#/search/quick. Accessed 26 Jul 2021

  40. Ramprasad Group (2021) polyga

  41. Yang W-J, Wang H-Y, Lee D-H, Kim Y-B (2015) Channel geometry optimization of a polymer electrolyte membrane fuel cell using genetic algorithm. Appl Energy 146:1–10. https://doi.org/10.1016/j.apenergy.2015.01.130

    Article  CAS  Google Scholar 

  42. Ali FAA, Alam J, Shukla AK et al (2020) A novel approach to optimize the fabrication conditions of thin film composite RO membranes using multi-objective genetic algorithm II. Polymers 12:494. https://doi.org/10.3390/polym12020494

    Article  CAS  Google Scholar 

  43. Pilania G, Iverson CN, Lookman T, Marrone BL (2019) Machine-learning-based predictive modeling of glass transition temperatures: a case of polyhydroxyalkanoate homopolymers and copolymers. J Chem Inf Model 59:5013–5025. https://doi.org/10.1021/acs.jcim.9b00807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Office of Naval Research through a Multi-University Research Initiative (MURI) Grant (N00014-20-1-2586). We greatly appreciate it.

Author information

Authors and Affiliations

Authors

Contributions

JK: Writing and reviewing of manuscript, modifying of genetic algorithm, experiment design, and analysis. LC: Original designer of retrosynthesis algorithm, review and editing of the manuscript. CK: Original designer of genetic algorithm. RR: Supervision, Methodology, Funding acquisition, Resources, Writing—review & editing.

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, J., Chen, L., Kim, C. et al. Design of polymers for energy storage capacitors using machine learning and evolutionary algorithms. J Mater Sci 56, 19623–19635 (2021). https://doi.org/10.1007/s10853-021-06520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06520-x

Navigation