Skip to main content

Advertisement

Log in

Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Environmental stringent norms, weight reduction, and the ever-depleting mode of petroleum resources have stimulated the use of textile-based natural fibres as reinforcement in polymeric composites. Natural fibres play a significant role in the sustainability of an environmentally friendly future. Natural fibres-based composites have fulfilled the environmental norms and contribute to developing lightweight materials with improved mechanical properties in the automotive sector. The automotive industry is yielding substantial steps towards a more environmentally friendly product by adopting textile fibres as a reinforcement for making various automotive parts, such as door panels, boot lining, instrument panel support, sun visor, wheel box, interior insulation, trunk panel, roof cover, and bumper. The growth rate of natural fibre production is increasing day by day. Each year, high energy-consuming products and synthetic fibres-based composites are being replaced by natural fibre-reinforced polymeric composites because natural fibre-based composites have excellent mechanical properties, relatively low cost (one-third of the cost of glass fibre), low density, and recyclability. This review analysis contributes an overview of the concept of vehicle weight reduction, properties required for composite materials to be used for automotive, most commercially used natural fibres and their use for automotive applications focusing on the matrices for the natural fibre composites (NFCs), natural fibre properties and potential challenges coupled with the use of natural fibres, surface modification methods of some natural fibres being used in the automotive industry and recent advancements in textile fibre-reinforced composites. Thermal properties and processing techniques of natural fibre-reinforced composites (NFRC) are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cramer DR, Taggart DF, Inc H (2002) Design and manufacture of an affordable advanced-composite automotive body structure. In: In proceedings from the 19th international battery, hybrid and fuel cell electric vehicle symposium and exhibition. pp 1–12

  2. Zhang J, Chaisombat K, He S, Wang CH (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater Des 36:75–80

    Article  CAS  Google Scholar 

  3. Beardmore P, Johnson CF (1986) The potential for composites in structural automotive applications. Compos Sci Technol 26:251–281

    Article  CAS  Google Scholar 

  4. Thilagavathi G, Pradeep ÃE, Kannaian T, Sasikala L (2010) Development of natural fiber nonwovens for application as car interiors for noise control. Journals.sagepubcom 39:267–278

    CAS  Google Scholar 

  5. Das S (2001) The cost of automotive polymer composites: a review and assessment of DOE’s lightweight materials composites research. Oak Ridge National Laboratory, Oak Ridge, TN, USA, pp 1-47. https://technicalreports.ornl.gov/cppr/y2001/rpt/108590_.pdf

  6. Al-Qureshi HA (2001) Automobile leaf springs from composite materials. J Mater Process Technol 118:58–61

    Article  CAS  Google Scholar 

  7. Hosseinzadeh R, Shokrieh MM, Lessard LB (2005) Parametric study of automotive composite bumper beams subjected to low-velocity impacts. Compos Struct 68:419–427

    Article  Google Scholar 

  8. Tucker N, Lindsey K (eds. ). (2002) An introduction to automotive composites. iSmithers Rapra Publishing.

  9. Jacob A (2001) Automotive composites—the road ahead. Reinf Plast 45:28–32

    Article  Google Scholar 

  10. Drzal LT, Mohanty AK, Misra M (2001) Bio-composite materials as alternatives to petroleum-based composites for automotive applications. Magnesium 40:1–3

    Google Scholar 

  11. Behera BK, Mishra R (2008) 3-Dimensional weaving. Indian J Fiber Textil Res 33:274–287. http://nopr.niscair.res.in/handle/123456789/2017

  12. Natural Fiber Composites Market | Share & Growth, 2020–2027. https://www.reportsanddata.com/report-detail/natural-fiber-composites-market. Accessed 14 Jul 2020

  13. Chen Y, Chiparus O, Sun L et al (2005) Natural fibers for automotive nonwoven composites. J Ind Text 35:47–62. https://doi.org/10.1177/1528083705053392

    Article  CAS  Google Scholar 

  14. Tajvidi M, Ebrahimi G (2003) Water uptake and mechanical characteristics of natural filler–polypropylene composites. J Appl Polym Sci 88:941–946. https://doi.org/10.1002/app.12029

    Article  CAS  Google Scholar 

  15. Mohamed MH, Bogdanovich AE, Dickinson LC et al (2001) A new generation of 3 D woven fabric preforms and composites. Sampe J 37:8–17

    Google Scholar 

  16. MacWilliams A (2007) advanced materials, lightweight materials in transportation, Report, Report Code: AVM056A

  17. Ghassemieh E (2011) Materials in automotive application, state of the art and prospects. In: New trends and developments in automotive industry. InTech, Marcello chiaberge

  18. Ishikawa T, Amaoka K, Masubuchi Y et al (2018) Overview of automotive structural composites technology developments in Japan. Compos Sci Technol 155:221–246

    Article  CAS  Google Scholar 

  19. Cheah LW (2010) Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the US. Massachusetts Institute of Technology, USA. https://dspace.mit.edu/handle/1721.1/62760

  20. Joost WJ (2012) Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM 64:1032–1038. https://doi.org/10.1007/s11837-012-0424-z

    Article  Google Scholar 

  21. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20:107–128. https://doi.org/10.1007/s10443-012-9258-7

    Article  CAS  Google Scholar 

  22. Lutsey N (2010) Review of technical literature and trends related to automobile mass-reduction technology. UCD-ITS-RR-10-10. https://escholarship.org/uc/item/85p4x0jn

  23. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B Eng 43:2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  24. Rong MZ, Zhang MQ, Liu Y et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447. https://doi.org/10.1016/S0266-3538(01)00046-X

    Article  CAS  Google Scholar 

  25. Akil HM, Omar MF, Mazuki AAM et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    Article  CAS  Google Scholar 

  26. Mohanty AK, Misra M, Drzal LT (eds. ). (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis.

  27. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science Publishers, Yverdon, Switzerland, pp 88–98

  28. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24. https://doi.org/10.1002/mame.201400089

    Article  CAS  Google Scholar 

  29. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

  30. Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Compos Part A Appl Sci Manuf 41:1329–1335

    Article  CAS  Google Scholar 

  31. Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Utilization of natural fibers in plastic composites: problems and opportunities. Lignocellul Compos 13:23–51

    Google Scholar 

  32. Alpár T, Hasan KMF, Horváth PG (2021) Introduction to biomass and biocomposites. In: Sriariyanun M, Rangappa SM, Siengchin S, Dhakal HN (eds) Value-added biocomposites. CRC Press, pp 1–33

  33. Campilho R (2015) Natural fiber composites. CRC Press, Boca Raton

    Book  Google Scholar 

  34. Pujari S, Ramakrishna A, Balaram Padal KT (2017) Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites. J Inst Eng Ser D 98:79–83. https://doi.org/10.1007/s40033-015-0102-8

    Article  CAS  Google Scholar 

  35. Li X, Tabil LG, Oguocha IN, Panigrahi S (2008) Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures. Compos Sci Technol 68:1753–1758. https://doi.org/10.1016/j.compscitech.2008.02.016

    Article  CAS  Google Scholar 

  36. Osugi R, Takagi H, Liu K, Gennai Y (2009) Thermal conductivity behavior of natural fiber-reinforced composites. In: Asian pacific conference for materials and mechanics 2009 at Yokohama, Japan, November 13–16. pp 2–4

  37. Ramanaiah K, Prasad AVR, Chandra Reddy KH (2013) Mechanical and thermo-physical properties of fish tail palm tree natural fiber-reinforced polyester composites. Int J Polym Anal Charact 18:126–136. https://doi.org/10.1080/1023666X.2013.747464

    Article  CAS  Google Scholar 

  38. Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos Part A Appl Sci Manuf 39:1582–1588. https://doi.org/10.1016/j.compositesa.2008.06.004

    Article  CAS  Google Scholar 

  39. Agrawal R, Saxena NS, Sreekala MS, Thomas S (2000) Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenolformaldehyde composites. J Polym Sci Part B Polym Phys 38:916–921. https://doi.org/10.1002/(SICI)1099-0488(20000401)38:7%3c916::AID-POLB2%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  40. Methacanon P, Weerawatsophon U, Sumransin N et al (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82:1090–1096. https://doi.org/10.1016/j.carbpol.2010.06.036

    Article  CAS  Google Scholar 

  41. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19:446–453

    Article  CAS  Google Scholar 

  42. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343. https://doi.org/10.1163/156855401753255422

    Article  CAS  Google Scholar 

  43. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  44. Joseph P (2001) Studies on short sisal fibre reinforced isotactic polypropylene composites. Mahatma Gandhi University, India

    Google Scholar 

  45. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers-an overview. Prog Polym Sci 34:982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  46. Wielage B, Lampke T, Marx G et al (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177. https://doi.org/10.1016/s0040-6031(99)00161-6

    Article  CAS  Google Scholar 

  47. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1179/014426009X12448168550109

    Article  CAS  Google Scholar 

  48. Dicker MPM, Duckworth PF, Baker AB et al (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289

    Article  CAS  Google Scholar 

  49. Ferreira FV, Francisco W, Menezes BRC et al (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929

    Article  CAS  Google Scholar 

  50. Ferreira FV, Brito FS, Franceschi W et al (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surfaces and Interfaces 10:100–109

    Article  CAS  Google Scholar 

  51. Burakowski L, Rezende MC (2001) Modificação da rugosidade de fibras de carbono por método químico para aplicação em compósitos poliméricos. Polímeros 11:51–57

    Article  CAS  Google Scholar 

  52. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  53. Koo J (2016) Basics of polymer matrices and composites. In: Koo JH (ed) Fundamentals, properties, and applications of polymer nanocomposites. Cambridge University Press, pp 109–129

  54. Sinha R (2004) Outlines of polymer technology: manufacture of polymers. PHI Learning Pvt. Ltd., New Delhi

    Google Scholar 

  55. Mohammad NAB (2007) Synthesis, characterization and properties of the new unsaturated polyester resins for composite applications. MARA University of Technology

  56. Iijima T, Tochimoto T, Tomoi M (1991) Modification of epoxy resins with poly(aryl ether ketone)s. J Appl Polym Sci 43:1685–1692. https://doi.org/10.1002/app.1991.070430911

    Article  CAS  Google Scholar 

  57. Mukherjee RN, Pal SK, Sanyal SK, Phani KK (1984) Role of interface in fibre reinforced polymer composites with special reference to natural fibres. J Polym Mater 1:69–81

    Google Scholar 

  58. Pritchard G (2012) Developments in reinforced plastics—4. Elsevier Applied Science Publishers, New York

    Google Scholar 

  59. Sarkar BK, Roy R, Ray D (1997) Emerging dominance of composites as a structural material. J-Inst Eng India Part MM Metall Mater Sci Div 78:31–37

    Google Scholar 

  60. Baeurle SA, Hotta A, Gusev AA (2006) On the glassy state of multiphase and pure polymer materials. Polymer (Guildf) 47:6243–6253

    Article  CAS  Google Scholar 

  61. Lokensgard E (2016) Industrial plastics: theory and applications. Cengage Learning

    Google Scholar 

  62. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892

    Article  CAS  Google Scholar 

  63. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics. Int J Eng Res Innov 3:59–64

    Google Scholar 

  64. Bastioli C (2001) Global status of the production of biobased packaging materials. Starch-Stärke 53:351–355

    Article  CAS  Google Scholar 

  65. Edgar KJ, Buchanan CM, Debenham JS et al (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  66. Volova T (2004) Polyhydroxyalkanoates–plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, New York

    Google Scholar 

  67. Sharma SK, Mudhoo A (2011) A handbook of applied biopolymer technology: synthesis. Degradation and Applications. Royal Society of Chemistry

    Book  Google Scholar 

  68. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of Jute-Fibre Epoxy composites. Compos Sci Technol 60:2857–2863. https://doi.org/10.1016/S0266-3538(00)00168-8

    Article  CAS  Google Scholar 

  69. Hirai Y, Hamada H, Kim JK (1998) Impact response of woven glass-fabric composites—I: effect of fibre surface treatment. Compos Sci Technol 58:91–104. https://doi.org/10.1016/S0266-3538(97)00111-5

    Article  CAS  Google Scholar 

  70. Haq MIU, Raina A, Vohra K et al (2018) An assessment of tribological characteristics of different materials under sea water environment. Mater Today Proc 5:3602–3609

    Article  CAS  Google Scholar 

  71. Rowell RM (1998) Property enhanced natural fiber composite materials based on chemical modification. Science and Technology of Polymers and Advanced Materials. Plenum Press, New York, pp 717–732

    Chapter  Google Scholar 

  72. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  73. Stevens C (2010) Industrial applications of natural fibres: structure, properties and technical applications. John Wiley & Sons

    Google Scholar 

  74. Hasan KMF, Horváth PG, Alpár T (2021) Potential fabric-reinforced composites: a comprehensive review. J Mater Sci 56:14381–14415

    Article  CAS  Google Scholar 

  75. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol J Polym Process Inst 18:351–363

    Article  CAS  Google Scholar 

  76. Riccieri JE, De Carvalho LH, Vázquez A (1999) Interfacial properties and initial step of the water sorption in unidirectional unsaturated polyester/vegetable fiber composites. Polym Compos 20:29–37. https://doi.org/10.1002/pc.10332

    Article  CAS  Google Scholar 

  77. Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378. https://doi.org/10.1002/pc.10363

    Article  CAS  Google Scholar 

  78. Fung W, Hardcastle JM (2000) Textiles in automotive engineering. Woodhead Publishing limited, UK

    Google Scholar 

  79. Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457

    Article  CAS  Google Scholar 

  80. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  81. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376

    Article  CAS  Google Scholar 

  82. Harish S, Michael DP, Bensely A et al (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60:44–49

    Article  CAS  Google Scholar 

  83. Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808

    Article  CAS  Google Scholar 

  84. Agrawal R, Saxena NS, Sharma KB et al (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82. https://doi.org/10.1016/s0921-5093(99)00556-0

    Article  Google Scholar 

  85. Saravanakumar SS, Kumaravel A, Nagarajan T, Moorthy IG (2014) Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int J Polym Anal Charact 19:309–317. https://doi.org/10.1080/1023666X.2014.902527

    Article  CAS  Google Scholar 

  86. Arthanarieswaran A, Kumaravel VP, Saravanakumar SS (2015) Physico-chemical properties of alkali-treated Acacia leucophloea fibers. Int J Polym Anal Charact 20:704–713. https://doi.org/10.1080/1023666X.2015.1081133

    Article  CAS  Google Scholar 

  87. Rajkumar R, Manikandan A, Saravanakumar SS (2016) Physicochemical properties of alkali-treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 21:359–364. https://doi.org/10.1080/1023666X.2016.1160509

    Article  CAS  Google Scholar 

  88. Reddy KO, Maheswari CU, Shukla M et al (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng 44:433–438

    Article  CAS  Google Scholar 

  89. Reddy KO, Maheswari CU, Rajulu AV, Guduri BR (2009) Thermal degradation parameters and tensile properties of Borassus flabellifer fruit fiber reinforcement. J Reinf Plast Compos 28:2297–2301. https://doi.org/10.1177/0731684408092380

    Article  CAS  Google Scholar 

  90. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  CAS  Google Scholar 

  91. Shanmugasundaram I, Rajendran N, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 195:566–575

    Article  CAS  Google Scholar 

  92. Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV (2009) Thermal properties of Napier grass fibers. Mater Lett 63:2390–2392

    Article  CAS  Google Scholar 

  93. Liu Y, Ma Y, Yu J et al (2019) Development and characterization of alkali treated abaca fiber reinforced friction composites. Compos Interfaces 26:67–82. https://doi.org/10.1080/09276440.2018.1472456

    Article  CAS  Google Scholar 

  94. Herlina Sari N, Wardana ING, Irawan YS, Siswanto E (2018) Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J Nat Fibers 15:545–558. https://doi.org/10.1080/15440478.2017.1349707

    Article  CAS  Google Scholar 

  95. Sonnier R, Taguet A, Ferry L, Lopez-Cuesta JM (2018) Flame retardancy of natural fibers reinforced composites. Towards bio-based flame retardant polymers. Springer, Cham., pp 73–98

    Chapter  Google Scholar 

  96. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  97. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335

    Article  CAS  Google Scholar 

  98. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135

    Article  CAS  Google Scholar 

  99. Prasad SV, Pavithran C, Rohatgi PK (1983) Alkali treatment of coir fibres for coir-polyester composites. J Mater Sci 18:1443–1454. https://doi.org/10.1007/BF01111964

    Article  CAS  Google Scholar 

  100. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13:426–435. https://doi.org/10.1016/S1672-6529(16)60315-3

    Article  Google Scholar 

  101. Asim M, Paridah MT, Saba N et al (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  102. Atiqah A, Jawaid M, Ishak MR, Sapuan SM (2018) Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. J Nat Fibers 15:251–261. https://doi.org/10.1080/15440478.2017.1325427

    Article  CAS  Google Scholar 

  103. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B Eng 133:201–217

    Article  CAS  Google Scholar 

  104. Indira KN, Jyotishkumar P, Thomas S (2012) Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers Polym 13:1319–1325. https://doi.org/10.1007/s12221-012-1319-x

    Article  CAS  Google Scholar 

  105. Singha AS, Thakur VK (2009) Synthesis and characterizations of silane treated Grewia optiva fibers. Int J Polym Anal Charact 14:301–321. https://doi.org/10.1080/10236660902871470

    Article  CAS  Google Scholar 

  106. Singha AS, Thakur VK, Mehta IK et al (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711. https://doi.org/10.1080/10236660903325518

    Article  CAS  Google Scholar 

  107. Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821–835

    Article  CAS  Google Scholar 

  108. Xie Y, Xiao Z, Militz H, Hao X (2017) Silane coupling agents used in natural fiber/plastic composites. In: Handbook of composites from renewable materials, functionalization. Scrivener Publications, pp 1219–1228

  109. Zegaoui A, Ma R, Dayo AQ et al (2018) Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers. Chinese J Chem Eng 26:1219–1228

    Article  CAS  Google Scholar 

  110. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Compos Part B Eng 30:321–331. https://doi.org/10.1016/S1359-8368(98)00055-9

    Article  Google Scholar 

  111. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508:247–252

    Article  CAS  Google Scholar 

  112. Xu Y, Kawata S, Hosoi K et al (2009) Thermomechanical properties of the silanized-kenaf/polystyrene composites. Express Polym Lett 3:657–664. https://doi.org/10.3144/expresspolymlett.2009.82

    Article  CAS  Google Scholar 

  113. Ismail H, Khalil HA (2000) The effects of partial replacement of oil palm wood flour by silica and silane coupling agent on properties of natural rubber compounds. Polym Test 20:33–41

    Article  Google Scholar 

  114. Khalil HA, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75

    Article  Google Scholar 

  115. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  CAS  Google Scholar 

  116. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191. https://doi.org/10.1163/156855408783810920

    Article  CAS  Google Scholar 

  117. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B Eng 30:309–320

    Article  Google Scholar 

  118. Nishino T, Hirao K, Kotera M (2006) X-ray diffraction studies on stress transfer of kenaf reinforced poly (L-lactic acid) composite. Compos Part A Appl Sci Manuf 37:2269–2273

    Article  CAS  Google Scholar 

  119. Sreekala MS, Kumaran MG, Joseph S et al (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7:295–329. https://doi.org/10.1023/A:1026534006291

    Article  CAS  Google Scholar 

  120. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci Manuf 36:1110–1118

    Article  CAS  Google Scholar 

  121. Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chemie 272:108–116. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1%3c108::AID-APMC108%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  122. Mishra S, Mohanty AK, Drzal LT et al (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385

    Article  CAS  Google Scholar 

  123. Joseph S, Koshy P, Thomas S (2005) The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Compos Interfaces 12:581–600. https://doi.org/10.1163/1568554054915183

    Article  CAS  Google Scholar 

  124. Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos Part A Appl Sci Manuf 33:1185–1190

    Article  Google Scholar 

  125. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl Sci Manuf 33:1083–1093

    Article  Google Scholar 

  126. Joseph S, Oommen Z, Thomas S (2006) Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 100:2521–2531. https://doi.org/10.1002/app.23680

    Article  CAS  Google Scholar 

  127. Luz SM, Del Tio J, Rocha GJM et al (2008) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos Part A Appl Sci Manuf 39:1362–1369

    Article  CAS  Google Scholar 

  128. Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos Part A Appl Sci Manuf 35:357–362

    Article  CAS  Google Scholar 

  129. dos Santos PA, Giriolli JC, Amarasekera J, Moraes G (2008) Natural fibers plastic composites for automotive applications. In: 8th Annual automotive composites conference and exhibition (ACCE 2008). Troy, MI: SPE Automotive & Composites Division. pp 492–500

  130. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute–PP composites. J Reinf Plast Compos 23:625–637. https://doi.org/10.1177/0731684404032868

    Article  CAS  Google Scholar 

  131. Mishra S, Naik JB, Patil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60:1729–1735

    Article  CAS  Google Scholar 

  132. Yang HS, Kim HJ, Park HJ et al (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77:45–55

    Article  Google Scholar 

  133. Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal–polypropylene composites. J Appl Polym Sci 94:1336–1345. https://doi.org/10.1002/app.21161

    Article  CAS  Google Scholar 

  134. Han G, Lei Y, Wu Q et al (2008) Bamboo–fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130. https://doi.org/10.1007/s10924-008-0094-7

    Article  CAS  Google Scholar 

  135. Xue Y, Veazie DR, Glinsey C et al (2007) Environmental effects on the mechanical and thermomechanical properties of aspen fiber–polypropylene composites. Compos Part B Eng 38:152–158

    Article  CAS  Google Scholar 

  136. Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96:93–102. https://doi.org/10.1002/app.21410

    Article  CAS  Google Scholar 

  137. Mutjé P, Vallejos ME, Girones J et al (2006) Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J Appl Polym Sci 102:833–840. https://doi.org/10.1002/app.24315

    Article  CAS  Google Scholar 

  138. Nair KM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529

    Article  Google Scholar 

  139. Ali A, Shaker K, Nawab Y et al (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47:2153–2183

    Article  CAS  Google Scholar 

  140. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer (Guildf) 37:5139–5149

    Article  CAS  Google Scholar 

  141. Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26:447–463. https://doi.org/10.1177/0731684406072526

    Article  CAS  Google Scholar 

  142. Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1:109–117. https://doi.org/10.1166/jbmb.2007.012

    Article  Google Scholar 

  143. Jafari MA, Nikkhah A, Sadeghi AA, Chamani M (2007) The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pak J Biol Sci 10:2660–2664

    Google Scholar 

  144. Kozłowski RM, Różańska W (2012) Enzymatic treatment of natural fibres. In: In handbook of natural fibres. Woodhead Publishing, pp 227–244

  145. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860

    Article  CAS  Google Scholar 

  146. George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  147. Buschle-Diller G, Fanter C, Loth F (1999) Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J 69:244–251. https://doi.org/10.1177/004051759906900403

    Article  CAS  Google Scholar 

  148. Muniyasamy S (2011) Oxo-biodegradation of full carbon backbone polymers under different environmental conditions. University of Pisa

  149. Pagga U, Beimborn DB, Boelens J, De Wilde B (1995) Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere 31:4475–4487. https://doi.org/10.1016/0045-6535(95)00326-4

    Article  CAS  Google Scholar 

  150. Scherübl B, Hintermann M (2005) Application of natural fibre reinforced plastics for automotive exterior parts, with a focus on underfloor systems. In: Proceedings of the 8th international AVK-TV conference, Baden, Germany, (p. D5).

  151. Verma D, Sharma S (2017) Green biocomposites: a prospective utilization in automobile industry. Green Energy Technol. https://doi.org/10.1007/978-3-319-49382-4_8

    Article  Google Scholar 

  152. Gupta MK, Srivastava RK (2016) Mechanical properties of hybrid fibers-reinforced polymer composite: a review. Polym - Plast Technol Eng 55:626–642

    Article  CAS  Google Scholar 

  153. Huda MS, Drzal LT, Ray D, et al (2008) Natural-fiber composites in the automotive sector. In: In properties and performance of natural-fibre composites. Woodhead Publishing, pp 221–268

  154. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86

    Article  CAS  Google Scholar 

  155. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  156. Dittenber DB, Gangarao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429

    Article  Google Scholar 

  157. Elkington M, Bloom D, Ward C et al (2015) Hand layup: understanding the manual process. Adv Manuf Polym Compos Sci 1:138–151. https://doi.org/10.1080/20550340.2015.1114801

    Article  Google Scholar 

  158. Sèbe G, Cetin NS, Hill CAS, Hughes M (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349. https://doi.org/10.1023/A:1026538107200

    Article  Google Scholar 

  159. Dai D, Fan M (2014) Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. In: In natural fibre composites. Woodhead Publishing, pp 3–65

  160. Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualization of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos Part A Appl Sci Manuf 31:1303–1310. https://doi.org/10.1016/S1359-835X(00)00008-7

    Article  Google Scholar 

  161. Summerscales J, Searle TJ (2005) Low-pressure (vacuum infusion) techniques for moulding large composite structures. In: Proceedings of the institution of mechanical engineers, Part L: Journal of materials: design and applications. pp 45–58

  162. Goren A, Atas C (2008) Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding. Arch Mater Sci Eng 34:117–120

    Google Scholar 

  163. Pan P, Zhu B, Kai W et al (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. J Appl Polym Sci 105:1511–1520. https://doi.org/10.1002/app.26407

    Article  CAS  Google Scholar 

  164. Hebel DE, Javadian A, Heisel F, et al (2014) Process-controlled optimization of the tensile strength of bamboo fiber composites for structural applications. In: Composites part b: engineering. pp 125–131

  165. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293. https://doi.org/10.1016/S0266-3538(02)00254-3

    Article  CAS  Google Scholar 

  166. Khan SM, Malik SA, Gull N et al (2019) Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network. Adv Compos Mater 28:409–423. https://doi.org/10.1080/09243046.2019.1573448

    Article  CAS  Google Scholar 

  167. Xiong X, Shen SZ, Hua L et al (2018) Finite element models of natural fibers and their composites: A review. J Reinf Plast Compos 37:617–635. https://doi.org/10.1177/0731684418755552

    Article  CAS  Google Scholar 

  168. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28:864–871. https://doi.org/10.1179/1743284712Y.0000000022

    Article  CAS  Google Scholar 

  169. Kalaprasad G, Joseph K, Thomas S, Pavithran C (1997) Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 32:4261–4267. https://doi.org/10.1023/A:1018651218515

    Article  CAS  Google Scholar 

  170. Migneault S, Koubaa A, Erchiqui F et al (2011) Application of micromechanical models to tensile properties of wood-plastic composites. Wood Sci Technol 45:521–532. https://doi.org/10.1007/s00226-010-0351-5

    Article  CAS  Google Scholar 

  171. Beckermann GW, Pickering KL (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: Micro-mechanics and strength prediction modelling. Compos Part A Appl Sci Manuf 40:210–217. https://doi.org/10.1016/j.compositesa.2008.11.005

    Article  CAS  Google Scholar 

  172. Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos Part A Appl Sci Manuf 37:1660–1671. https://doi.org/10.1016/j.compositesa.2005.10.006

    Article  CAS  Google Scholar 

  173. Munde YS, Ingle RB (2015) Theoretical modeling and experimental verification of mechanical properties of natural fiber reinforced thermoplastics. Procedia Technol 19:320–326. https://doi.org/10.1016/j.protcy.2015.02.046

    Article  Google Scholar 

  174. Kern WT, Kim W, Argento A et al (2016) Finite element analysis and microscopy of natural fiber composites containing microcellular voids. Mater Des 106:285–294. https://doi.org/10.1016/j.matdes.2016.05.094

    Article  Google Scholar 

  175. Modniks J, Andersons J (2010) Modeling elastic properties of short flax fiber-reinforced composites by orientation averaging. Comput Mater Sci 50:595–599. https://doi.org/10.1016/j.commatsci.2010.09.022

    Article  CAS  Google Scholar 

  176. Sliseris J, Yan L, Kasal B (2016) Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos Part B Eng 89:143–154. https://doi.org/10.1016/j.compositesb.2015.11.038

    Article  CAS  Google Scholar 

  177. Gopalan V, Suthenthiraveerappa V, Annamalai AR et al (2021) Dynamic characteristics of woven flax/epoxy laminated composite plate. Polymers (Basel) 13:1–14. https://doi.org/10.3390/polym13020209

    Article  CAS  Google Scholar 

  178. Lucintel. Opportunities in natural fiber composites, available from: http://www.lucintel.com/ (2011, accessed 27 December 2015).

  179. Bos HL (2004) The potential of flax fibres as reinforcement for composite materials. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  180. Suddell BC (2008) Industrial fibres: recent and current developments. In Proceedings of the symposium on natural fibres. In: Rome: FAO and CFC. pp 71–82

  181. Bledzki AK, Faruk O, Jaszkiewicz A (2010) Cars from renewable materials.

  182. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588

    Article  CAS  Google Scholar 

  183. Marsh G (2003) Next step for automotive materials. Mater Today 6:36–43

    Article  Google Scholar 

  184. Chauhan V, Kärki T, Varis J (2019) Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719889095

    Article  Google Scholar 

  185. Koronis G, Silva A, Fontul M (2013) Green composites: A review of adequate materials for automotive applications. Compos Part B Eng 44:120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  186. Choudhury A (2008) Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. Mater Sci Eng A 491:492–500

    Article  CAS  Google Scholar 

  187. Toyota Green Innovations. https://www.toyota-europe.com/world-of-toyota/feel/environmental-sustainability

  188. De Bruijn JCM (2000) Natural fibre mat thermoplastic products from a processor’s point of view. Appl Compos Mater 7:415–420. https://doi.org/10.1023/A:1026554610834

    Article  Google Scholar 

  189. Alrahman LA, Rahman RA (2013) Experimental study on natural fibers for green acoustic absorption materials. Am J Appl Sci 10:1307–1314. https://doi.org/10.3844/ajassp.2013.1307.1314

    Article  Google Scholar 

  190. Future Fibres: Publications. http://www.fao.org/economic/futurefibres/resources2/en/. Accessed 28 Jun 2020

  191. Edana. Automotive nonwovens. Newsletter. https://www.edana.org/nw-related-industry/nonwovens-in-daily-life/automotive

  192. Pickering K (2008) Properties and performance of natural-fibre composites. Woodhead Publishing Limited, UK

    Book  Google Scholar 

  193. Li M, Pu Y, Thomas VM et al (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B Eng 200:108254. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  CAS  Google Scholar 

  194. Carus M, Eder A, Dammer L, et al (2015) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global markets 2012 and future trends in automotive and construction

  195. Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387

    Article  CAS  Google Scholar 

  196. Fu SY, Xu G, Mai YW (2002) On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos Part B Eng 33:291–299

    Article  Google Scholar 

  197. Sreekala MS, George J, Kumaran MG, Thomas S (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353

    Article  CAS  Google Scholar 

  198. Olorunnishola AAG, Adubi EG (2018) A comparative analysis of a blend of natural jute and glass fibers with synthetic glass fibers composites as car bumper materials. IOSR J Mech Civ Eng 15:67–71

    Google Scholar 

  199. Hasan KMF, Horváth PG, Alpár T (2021) Thermomechanical behavior of methylene diphenyl diisocyanate-bonded flax/glass woven fabric reinforced laminated composites. ACS Omega 6:6124–6133. https://doi.org/10.1021/acsomega.0c04798

    Article  CAS  Google Scholar 

  200. Kim DH, Kim HG, Kim HS (2015) Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle. Compos Struct 131:742–752

    Article  Google Scholar 

  201. Davoodi MM, Sapuan SM, Ahmad D et al (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932

    Article  CAS  Google Scholar 

  202. Mastura MT, Sapuan SM, Mansor MR, Nuraini AA (2017) Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. Int J Adv Manuf Technol 91:2031–2048. https://doi.org/10.1007/s00170-016-9882-8

    Article  Google Scholar 

  203. Mastura MT, Sapuan SM, Mansor MR, Nuraini AA (2017) Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. Int J Adv Manuf Technol 89:2203–2219. https://doi.org/10.1007/s00170-016-9217-9

    Article  Google Scholar 

  204. Bayrakceken H, Tasgetiren S, Aslantas K (2006) Fracture of an automobile anti-roll bar. Eng Fail Anal 13:732–738. https://doi.org/10.1016/j.engfailanal.2005.04.002

    Article  Google Scholar 

  205. Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297:829–840

    Article  CAS  Google Scholar 

  206. Zhen-Yu W, Jie W, Feng-Hong C et al (2019) Influence of banana fiber on physicomechanical and tribological properties of phenolic based friction composites. Mater Res Express 6:1–10. https://doi.org/10.1088/2053-1591/ab160a

    Article  CAS  Google Scholar 

  207. Choosri S, Sombatsompop N, Wimolmala E, Thongsang S (2019) Potential use of fly ash and bagasse ash as secondary abrasives in phenolic composites for eco-friendly brake pads applications. Proc Inst Mech Eng Part D J Automob Eng 233:1296–1305. https://doi.org/10.1177/0954407018772240

    Article  Google Scholar 

  208. Matějka V, Fu Z, Kukutschová J et al (2013) Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Mater Des 51:847–853

    Article  CAS  Google Scholar 

  209. Eriksson M, Jacobson S (2000) Tribological surfaces of organic brake pads. Tribol Int 33:817–827. https://doi.org/10.1016/S0301-679X(00)00127-4

    Article  CAS  Google Scholar 

  210. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Book  Google Scholar 

  211. Hasan KMF, Horváth PG, Zsolt K, Alpár T (2021) Design and fabrication technology in biocomposite manufacturing. In: Sriariyanun M, Rangappa, SM, Siengchin S, Dhakal HN (eds) Value-added biocomposites. CRC Press, pp 157–188

  212. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959

    Article  CAS  Google Scholar 

  213. Horzum N, Arik N, Truong YB (2017) Nanofibers for fiber-reinforced composites. In: Ozgur Seydibeyoglu M, Mohanty AK, Misra M (eds) In fiber technology for fiber-reinforced composites. Woodhead Publishing, pp 251–275

  214. Demiroglu S, Singaravelu V, Seydibeyoğlu MÖ, et al (2017) The use of nanotechnology for fibre-reinforced polymer composites. In: Ozgur Seydibeyoglu M, Mohanty AK, Misra M (eds) In fiber technology for fiber-reinforced composites. Woodhead Publishing., pp 277–297

  215. Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc y Tecnol 7:159–178

    Google Scholar 

  216. Liu T, Lim KP, Tjiu WC et al (2003) Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer (Guildf) 44:3529–3535

    Article  CAS  Google Scholar 

  217. Roy S, Lu H, Vengadassalam K, Hussain F (2004) Compressive strength enhancement of pultruded thermoplastic composites using nanoclay reinforcement. In 45th AIAA/ASME/ASCE/AHS/ASC structures. In: Structural dynamics & materials conference. pp 2263–2277

  218. Usuki A, Kawasumi M, Kojima Y et al (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. J Mater Res 8:1174–1178

    Article  CAS  Google Scholar 

  219. Zhang X, Huang Y, Wang T, Liu L (2007) Influence of fibre surface oxidation–reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites. Compos Part A Appl Sci Manuf 38:936–944

    Article  CAS  Google Scholar 

  220. Chen W, Tao X, Liu Y (2006) Carbon nanotube-reinforced polyurethane composite fibers. Compos Sci Technol 66:3029–3034

    Article  CAS  Google Scholar 

  221. Sen A, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim 101:265–271. https://doi.org/10.1007/s10973-009-0637-8

    Article  CAS  Google Scholar 

  222. Ji Y, Li B, Ge S et al (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328. https://doi.org/10.1021/la0525022

    Article  CAS  Google Scholar 

  223. Schmidt H (1994) Multifunctional inorganic-organic composite sol-gel coatings for glass surfaces. J Non Cryst Solids 178:302–312

    Article  CAS  Google Scholar 

  224. Dash BP (2013) Modelling and characterization of 3D woven solid structures and their composites. Indian Institute of Technology Delhi, India. http://eprint.iitd.ac.in/bitstream/handle/12345678/6511/TH-4512.pdf?sequence=2

  225. Hasan KMF, Horváth PG, Markó G, Alpár T (2021) Thermomechanical characteristics of flax-woven-fabric-reinforced poly(lactic acid) and polypropylene biocomposites. Green Mater. https://doi.org/10.1680/jgrma.20.00052

    Article  Google Scholar 

  226. Krishnasamy P, Rajamurugan G, Aravindraj S, Sudhagar PE (2020) Vibration and wear characteristics of aloevera/flax/hemp woven fiber epoxy composite reinforced with wire mesh and BaSO4. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1835782

    Article  Google Scholar 

  227. Khatkar V, Behera BK, Manjunath RN (2020) Textile structural composites for automotive leaf spring application. Compos Part B Eng 182:1–8

    Article  CAS  Google Scholar 

  228. Arab SM, Karimi S, Jahromi SAJ et al (2015) Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Mater Sci Eng A 632:50–57

    Article  CAS  Google Scholar 

  229. Izadi H, Gerlich AP (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon N Y 50:4744–4749

    Article  CAS  Google Scholar 

  230. Lim DK, Shibayanagi T, Gerlich AP (2009) Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A 507:194–199. https://doi.org/10.1016/j.msea.2008.11.067

    Article  CAS  Google Scholar 

  231. Mertens A, Simar A, Adrien J et al (2015) Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg–C composites. Mater Charact 107:125–133

    Article  CAS  Google Scholar 

  232. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon N Y 50:1843–1852. https://doi.org/10.1016/j.carbon.2011.12.034

    Article  CAS  Google Scholar 

  233. Arora HS, Singh H, Dhindaw BK (2012) Composite fabrication using friction stir processing—a review. Int J Adv Manuf Technol 61:1043–1055. https://doi.org/10.1007/s00170-011-3758-8

    Article  Google Scholar 

  234. Maurya R, Kumar B, Ariharan S et al (2016) Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater Des 98:155–166

    Article  CAS  Google Scholar 

  235. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348

    Article  CAS  Google Scholar 

  236. Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17:445–453. https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Behera.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olhan, S., Khatkar, V. & Behera, B.K. Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci 56, 18867–18910 (2021). https://doi.org/10.1007/s10853-021-06509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06509-6