Skip to main content
Log in

Glass structure of industrial ground granulated blast furnace slags (GGBS) investigated by time-resolved Raman and NMR spectroscopies

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ground granulated blast furnace slags (GGBS) are glassy by-products from iron production that are commonly used as supplementary cementitious materials in blended cements. The glass structure of seven industrial GGBS was investigated by Raman and nuclear magnetic resonance spectroscopies. The complex composition of the slags induced multiple analytical challenges. Under usual continuous excitation, the Raman signal was masked by strong luminescence, so that analysis was carried out on a time-resolved Raman (TRR) device. TRR allowed to eliminate luminescence and resulted in exploitable spectra that showed variations in line with theoretical NBO/T values. The analysis of 27Al and 29Si NMR spectra was complicated by the presence of paramagnetic nuclei and the wide variety of environments. Nevertheless, 27Al NMR showed that Al was present as a network former, mainly in fourfold coordination and careful analyses of 29Si NMR spectra allowed the comparison of glass network polymerization of industrial GGBS in line with the theoretical NBO/T based on their composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5.
Figure 6

Similar content being viewed by others

References

  1. Matthes W, Vollpracht A, Villagrán Y et al (2018) Ground Granulated Blast-Furnace Slag. In: De Belie N, Soutsos M, Gruyaert E (eds) Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. Springer International Publishing, Cham, pp 1–53

    Google Scholar 

  2. Smolczyk H-G (1980) Structure des laitiers et hydratation des ciments de laitiers: structure et caractérisation des laitiers. In: RAPPORTS PRINCIPAUX. Paris, p III-1/1–1/17

  3. Taylor HFW (1997) Cement chemistry, 2nd ed. Thomas Telford Publishing. https://doi.org/10.1680/cc.25929

    Book  Google Scholar 

  4. Schröder F (1969) Slags and slag cements. In: Proceedings of the 5th international symposium on the chemistry of cement. Tokyo, pp 149–199

  5. Bijen J (1996) Benefits of slag and fly ash. Constr Build Mater 10:309–314. https://doi.org/10.1016/0950-0618(95)00014-3

    Article  Google Scholar 

  6. Ehrenberg A (2002) CO2 emissions and energy consumption of granulated blastfurnace slag. Proceedings Manufacturing and Processing of Iron and Steel Slags. Euroslag publication, Keyworth, UK, pp 151–166

    Google Scholar 

  7. Hogan F, Meusel J (1981) Evaluation for Durability and Strength Development of a Ground Granulated Blast Furnace Slag. Cem Concr Aggreg 3:40. https://doi.org/10.1520/CCA10201J

    Article  CAS  Google Scholar 

  8. Van den Heede P, De Belie N (2012) Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem Concr Compos 34:431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

    Article  CAS  Google Scholar 

  9. Ehrenberg A, Israel D, Kühn A, et al (2008) Hüttensand: Reaktionspotenzial und Herstellung optimierter Zemente Tl.1 (Granulated blast furnace slag: reaction potential and production of optimized cements, part 1). Cem Int

  10. Robeyst N, Gruyaert E, Grosse CU, De Belie N (2008) Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem Concr Res 38:1169–1176. https://doi.org/10.1016/j.cemconres.2008.04.006

    Article  CAS  Google Scholar 

  11. Smolczyk H-G (1978) Zum Einfluß der Chemie des Hüttensands auf die Festigkeit von Hochofenzementen. Zem. - Kalk - Gips 294–296

  12. Blotevogel S, Ehrenberg A, Steger L et al (2020) Ability of the R3 test to evaluate differences in early age reactivity of 16 industrial ground granulated blast furnace slags (GGBS). Cem Concr Res 130:105998. https://doi.org/10.1016/j.cemconres.2020.105998

    Article  CAS  Google Scholar 

  13. Blotevogel S, Steger L, Hart D et al (2020) Effect of TiO 2 and 10 minor elements on the reactivity of ground granulated blast furnace slag (GGBS) in blended cements. J Am Ceram Soc jace. https://doi.org/10.1111/jace.17431

    Article  Google Scholar 

  14. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cem Concr Res 42:74–83. https://doi.org/10.1016/j.cemconres.2011.08.005

    Article  CAS  Google Scholar 

  15. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cem Concr Res 41:955–963. https://doi.org/10.1016/j.cemconres.2011.05.002

    Article  CAS  Google Scholar 

  16. Gong K, White CE (2016) Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cem Concr Res 89:310–319. https://doi.org/10.1016/j.cemconres.2016.09.003

    Article  CAS  Google Scholar 

  17. Tänzer R, Buchwald A, Stephan D (2015) Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag. Mater Struct 48:629–641. https://doi.org/10.1617/s11527-014-0461-x

    Article  CAS  Google Scholar 

  18. Wang PZ, Trettin R, Rudert V, Spaniol T (2004) Influence of Al 2 O 3 content on hydraulic reactivity of granulated blast-furnace slag, and the interaction between Al 2 O 3 and CaO. Adv Cem Res 16:1–7. https://doi.org/10.1680/adcr.2004.16.1.1

    Article  Google Scholar 

  19. Whittaker M, Zajac M, Ben Haha M et al (2014) The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cem Concr Res 66:91–101. https://doi.org/10.1016/j.cemconres.2014.07.018

    Article  CAS  Google Scholar 

  20. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0

    Article  CAS  Google Scholar 

  21. Shimoda K, Tobu Y, Kanehashi K et al (2008) Total understanding of the local structures of an amorphous slag: Perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR. J Non-Cryst Solids 354:1036–1043. https://doi.org/10.1016/j.jnoncrysol.2007.08.010

    Article  CAS  Google Scholar 

  22. Huang C, Behrman EC (1991) Structure and properties of calcium aluminosilicate glasses. J Non-Cryst Solids 128:310–321. https://doi.org/10.1016/0022-3093(91)90468-L

    Article  CAS  Google Scholar 

  23. Li C, Sun HH, Li LT (2010) Glass Phase Structure of Blast Furnace Slag. Adv Mater Res 168–170:3–7

    Article  Google Scholar 

  24. Risbud SH, Kirkpatrick RJ, Taglialavore AP, Montez B (1987) Solid-state NMR Evidence of 4-, 5, and 6-Fold Aluminum Sites in Roller-Quenched SiO2-A12O3 Glasses. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1987.tb04859.x

    Article  Google Scholar 

  25. Toplis MJ, Kohn SC, Smith ME, Poplett IJF (2000) Fivefold-coordinated aluminum in tectosilicate glasses observed by triple quantum MAS NMR. Am Mineral 85:1556–1560. https://doi.org/10.2138/am-2000-1031

    Article  CAS  Google Scholar 

  26. Sen S, Youngman RE (2004) High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses. J Phys Chem B 108:7557–7564. https://doi.org/10.1021/jp031348u

    Article  CAS  Google Scholar 

  27. Neuville DR, Cormier L, Flank A-M et al (2004) Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. Chem Geol 213:153–163. https://doi.org/10.1016/j.chemgeo.2004.08.039

    Article  CAS  Google Scholar 

  28. Lee S, Min DJ (2018) Investigation of sulfide capacity of aluminosilicate slag based on ionic structure considerations. J Am Ceram Soc 101:634–643. https://doi.org/10.1111/jace.15227

    Article  CAS  Google Scholar 

  29. Le Cornec D, Cormier L, Galoisy L et al (2021) Molecular structure of amorphous slags: An experimental and numerical approach. J Non-Cryst Solids 556:120444. https://doi.org/10.1016/j.jnoncrysol.2020.120444

    Article  CAS  Google Scholar 

  30. Neuville DR, Cormier L, Montouillout V et al (2008) Amorphous materials: Properties, structure, and durability: Structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations. Am Mineral 93:1721–1731. https://doi.org/10.2138/am.2008.2867

    Article  CAS  Google Scholar 

  31. McMillan P, Piriou B, Navrotsky A (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim Cosmochim Acta 46:2021–2037. https://doi.org/10.1016/0016-7037(82)90182-X

    Article  CAS  Google Scholar 

  32. McMillan P, Piriou B (1983) Raman spectroscopy of calcium aluminate glasses and crystals. J Non-Cryst Solids 55:221–242. https://doi.org/10.1016/0022-3093(83)90672-5

    Article  CAS  Google Scholar 

  33. Merzbacher CI, White WB (1991) The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J Non-Cryst Solids 130:18–34. https://doi.org/10.1016/0022-3093(91)90152-V

    Article  CAS  Google Scholar 

  34. Mysen B, Neuville D (1995) Effect of temperature and TiO2 content on the structure of Na2Si2O5Na2Ti2O5 melts and glasses. Geochim Cosmochim Acta 59:325–342. https://doi.org/10.1016/0016-7037(94)00290-3

    Article  CAS  Google Scholar 

  35. Neuville DR, Mysen BO (1996) Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2. Geochim Cosmochim Acta 60:1727–1737. https://doi.org/10.1016/0016-7037(96)00049-X

    Article  CAS  Google Scholar 

  36. Neuville DR, Cormier L, Massiot D (2006) Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem Geol 229:173–185. https://doi.org/10.1016/j.chemgeo.2006.01.019

    Article  CAS  Google Scholar 

  37. Kucharczyk S, Sitarz M, Zajac M, Deja J (2018) The effect of CaO/SiO 2 molar ratio of CaO-Al 2 O 3 -SiO 2 glasses on their structure and reactivity in alkali activated system. Spectrochim Acta A Mol Biomol Spectrosc 194:163–171. https://doi.org/10.1016/j.saa.2018.01.018

    Article  CAS  Google Scholar 

  38. Liang D, Yan Z, Lv X et al (2017) Transition of Blast Furnace Slag from Silicate-Based to Aluminate-Based: Structure Evolution by Molecular Dynamics Simulation and Raman Spectroscopy. Metall Mater Trans B 48:573–581. https://doi.org/10.1007/s11663-016-0855-y

    Article  CAS  Google Scholar 

  39. Zheng K, Liao J, Wang X, Zhang Z (2013) Raman spectroscopic study of the structural properties of CaO–MgO–SiO2–TiO2 slags. J Non-Cryst Solids 376:209–215. https://doi.org/10.1016/j.jnoncrysol.2013.06.003

    Article  CAS  Google Scholar 

  40. Keeley PM, Rowson NA, Johnson TP, Deegan DE (2017) The effect of the extent of polymerisation of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process 164:37–44. https://doi.org/10.1016/j.minpro.2017.05.007

    Article  CAS  Google Scholar 

  41. Raffaëlly L, Champagnon B (2007) High temperature experiments: a way to observe Raman scattering in luminescent samples. J Raman Spectrosc 38:1242–1245. https://doi.org/10.1002/jrs.1757

    Article  CAS  Google Scholar 

  42. Fotso Gueutue ES, Canizares A, Simon P et al (2018) Nanosecond time-resolved Raman spectroscopy for solving some Raman problems such as luminescence or thermal emission. J Raman Spectrosc 49:822–829. https://doi.org/10.1002/jrs.5345

    Article  CAS  Google Scholar 

  43. Tobon YA, Bormann D, Canizares A et al (2011) Time-resolved Raman studies on Al 2 O 3: Cr 3+: lifetime measurements of the excited-state transition Ē → 2Ā. J Raman Spectrosc 42:1109–1113. https://doi.org/10.1002/jrs.2834

    Article  CAS  Google Scholar 

  44. Charpentier T, Okhotnikov K, Novikov AN et al (2018) Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies. J Phys Chem B 122:9567–9583. https://doi.org/10.1021/acs.jpcb.8b05721

    Article  CAS  Google Scholar 

  45. Florian P, Sadiki N, Massiot D, Coutures JP (2007) 27 Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts. J Phys Chem B 111:9747–9757. https://doi.org/10.1021/jp072061q

    Article  CAS  Google Scholar 

  46. Dutreilh-Colas M, Canizares A, Blin A et al (2011) In Situ Raman Diagnostic of Structural Relaxation Times of Silica Glasses. In Situ Raman Diagnostic of Silica Glasses. J Am Ceram Soc 94:2087–2091. https://doi.org/10.1111/j.1551-2916.2011.04426.x

    Article  CAS  Google Scholar 

  47. McMillan P (1984) A Raman spectroscopics tudy of glasses in the system CaO-MgO-SiO2. Am Mineral 69:645–659

    CAS  Google Scholar 

  48. Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55:355–367. https://doi.org/10.1007/s10858-013-9718-x

    Article  CAS  Google Scholar 

  49. Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  CAS  Google Scholar 

  50. Massiot D, Fayon F, Capron M et al (2002) Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra. Magn Reson Chem 40:70–76. https://doi.org/10.1002/mrc.984

    Article  CAS  Google Scholar 

  51. Czjzek G, Fink J, Götz F et al (1981) Atomic coordination and the distribution of electric field gradients in amorphous solids. Phys Rev B 23:2513–2530. https://doi.org/10.1103/PhysRevB.23.2513

    Article  CAS  Google Scholar 

  52. Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts-a Raman spectroscopic study. Am Mineral 65:690–710

    CAS  Google Scholar 

  53. Le Losq C, Neuville DR, Florian P et al (2014) The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochim Cosmochim Acta 126:495–517. https://doi.org/10.1016/j.gca.2013.11.010

    Article  CAS  Google Scholar 

  54. Kalampounias AG, Yannopoulos SN, Papatheodorou GN (2006) A high-temperature Raman spectroscopic investigation of the potassium tetrasilicate in glassy, supercooled, and liquid states. J Chem Phys 125:164502. https://doi.org/10.1063/1.2360275

    Article  CAS  Google Scholar 

  55. McMillan PF, Poe BT, Gillet PH, Reynard B (1994) A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy. Geochim Cosmochim Acta 58:3653–3664. https://doi.org/10.1016/0016-7037(94)90156-2

    Article  CAS  Google Scholar 

  56. Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: Implications for chemical and physical properties of natural magma. Rev Geophys 20:353. https://doi.org/10.1029/RG020i003p00353

    Article  CAS  Google Scholar 

  57. Bechgaard TK, Scannell G, Huang L et al (2017) Structure of MgO/CaO sodium aluminosilicate glasses: Raman spectroscopy study. J Non-Cryst Solids 470:145–151. https://doi.org/10.1016/j.jnoncrysol.2017.05.014

    Article  CAS  Google Scholar 

  58. Nesbitt HW, Henderson GS, Bancroft GM, Neuville DR (2021) Spectral Resolution and Raman Q3 and Q2 cross sections in ~40 mol% Na2O glasses. Chem Geol 562:120040. https://doi.org/10.1016/j.chemgeo.2020.120040

    Article  CAS  Google Scholar 

  59. McMillan P, Piriou B (1982) The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J Non-Cryst Solids 53:279–298. https://doi.org/10.1016/0022-3093(82)90086-2

    Article  CAS  Google Scholar 

  60. Engelhardt G (1989) Multinuclear solid-state NMR in silicate and zeolite chemistry. TrAC Trends Anal Chem 8:343–347. https://doi.org/10.1016/0165-9936(89)87043-8

    Article  CAS  Google Scholar 

  61. Neuville DR, Cormier L, Massiot D (2004) Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim Cosmochim Acta 68:5071–5079. https://doi.org/10.1016/j.gca.2004.05.048

    Article  CAS  Google Scholar 

  62. Brown GE, Farges F, Calas G (1995) X-Ray Scattering and X-Ray Spectroscopy Studies of Silicate Melts. In: Rev. Mineral. Mineralogical Society of America, Washington D.C., pp 317–410

    Chapter  Google Scholar 

  63. Stebbins JF (1995) Chapter 7. Dynamics and structure of silicate and oxide melts: nuclear magnetic resonance studies. In: Stebbins JF, McMillan PF, Dingwell DB (eds), De Gruyter, pp 191–246

    Google Scholar 

  64. Le Cornec D, Galoisy L, Izoret L et al (2021) Structural role of titanium on slag properties. J Am Ceram Soc 104:105–113. https://doi.org/10.1111/jace.17407

    Article  CAS  Google Scholar 

  65. Lippmaa E, Maegi M+, Samoson A, et al (1980) Structural studies of silicates by solid-state high-resolution silicon-29 NMR. J Am Chem Soc 102:4889–4893

    Article  CAS  Google Scholar 

  66. Lippmaa E, Maegi M+, Samoson A, et al (1981) Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy. J Am Chem Soc 103:4992–4996

    Article  CAS  Google Scholar 

  67. Hiet J, Deschamps M, Pellerin N et al (2009) Probing chemical disorder in glasses using silicon-29 NMR spectral editing. Phys Chem Chem Phys 11:6935–6940

    Article  CAS  Google Scholar 

  68. Snellings R (2013) Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates. J Am Ceram Soc 96:2467–2475. https://doi.org/10.1111/jace.12480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 749809 (Actislag). The Renishaw Invia spectrometers were funded by the EquipeX PlaneX ANR-11-EQPX-36

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Blotevogel.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blotevogel, S., Montouillout, V., Canizares, A. et al. Glass structure of industrial ground granulated blast furnace slags (GGBS) investigated by time-resolved Raman and NMR spectroscopies. J Mater Sci 56, 17490–17504 (2021). https://doi.org/10.1007/s10853-021-06446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06446-4

Navigation