Skip to main content
Log in

Improved piezoresistive properties of ZnO/SiC nanowire heterojunctions with an optimized piezoelectric nanolayer

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The vital issue for semiconductor pressure sensors is how to improve the sensitivity of their piezoresistive behavior. In this work, aiming to substantially promote the sensitivity, ZnO/SiC nanowire heterojunctions with various ZnO piezoelectric shell thicknesses were constructed by adjusting the depositing times of atomic layer deposition (ALD). It was found that the thicknesses of coupled ZnO nanolayers played a profound effect on the response of the heterojunctions to the change of stresses, representing the tailored piezoresistive behaviors. Accordingly, the piezoresistive coefficient was optimized to ~ 9.47 × 10–11 Pa−1 with an enhanced ΔR/R0 value of ~ 0.88, once the ZnO nanolayer thickness is fixed at ~ 20 nm, superior to most of pressures sensors based on SiC nanomaterials. This work may provide a novel strategy for exploring advanced SiC-based pressure sensors by coupling with suitable thickness of the piezoelectric nanolayer to improve piezoresistive behaviors.

Graphical abstract

The tailored piezoresistive performance of ZnO/SiC nanowire heterojunctions with a adjusted shell thicknesses of ZnO piezoelectric nanolayers was reported, which had an enhanced piezoresistive coefficient of 9.47 × 10–11 Pa−1 and a ΔR/R0 of 0.88.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ramezany A, Pourkamali S (2018) Ultrahigh frequency nanomechanical piezoresistive amplifiers for direct channel-selective receiver front-ends. Nano Lett 18(4):2551–2556. https://doi.org/10.1021/acs.nanolett.8b00242

    Article  CAS  Google Scholar 

  2. Nguyen TK, Phan HP, Dinh T, Md Foisal AR, Nguyen NT, Dao DV (2018) High-temperature tolerance of the piezoresistive effect in p-4H-SiC for harsh environment sensing. J Mater Chem C 6(32):8613–8617. https://doi.org/10.1039/c8tc03094d

    Article  CAS  Google Scholar 

  3. Cheng B, Xiong L, Cai Q, Shi H, Zhao J, Su X, Xiao Y, Lei S (2016) Enhanced giant piezoresistance performance of sandwiched ZnS/Si/SiO2 radial heterostructure nanotubes for nonvolatile stress memory with repeatable writing and erasing. ACS Appl Mater Interfaces 8(50):34648–34658. https://doi.org/10.1021/acsami.6b10966

    Article  CAS  Google Scholar 

  4. Tsai MY, Tarasov A, Hesabi ZR, Taghinejad H, Campbell PM, Joiner CA, Adibi A, Vogel EM (2015) Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl Mater Interfaces 7(23):12850–12855. https://doi.org/10.1021/acsami.5b02336

    Article  CAS  Google Scholar 

  5. Kumar SS, Pant BD (2014) Design principles and considerations for the “ideal” silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20(7):1213–1247. https://doi.org/10.1007/s00542-014-2215-7

    Article  CAS  Google Scholar 

  6. Dao DV, Bui TT, Nakamura K, Dau VT, Yamada T, Hata K, Sugiyama S (2010) Towards highly sensitive strain sensing based on nanostructured materials. Adv Nat Sci-Nanosci 1(4):045012. https://doi.org/10.1088/2043-6262/1/4/045012

    Article  CAS  Google Scholar 

  7. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1(1):42–46. https://doi.org/10.1038/nnano.2006.53

    Article  CAS  Google Scholar 

  8. Phan HP, Dao DV, Nakamura K, Dimitrijev S, Nguyen NT (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech S 24(6):1663–1677. https://doi.org/10.1109/jmems.2015.2470132

    Article  CAS  Google Scholar 

  9. Li W, Liu Q, Chen S, Fang Z, Liang X, Wei G, Wang L, Yang W, Ji Y, Mai L (2018) Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation. Mater Horiz 5(5):883–889. https://doi.org/10.1039/c8mh00474a

    Article  CAS  Google Scholar 

  10. Chen S, Zhao L, Wang L, Gao F, Yang W (2019) Single-crystal N-doped SiC nanochannel array photoanode for efficient photoelectrochemical water splitting. J Mater Chem C 7:3173–3180. https://doi.org/10.1039/C9TC00061E

  11. Chen S, Li W, Li X, Yang W (2019) One-dimensional SiC nanostructures: designed growth, properties, and applications. Prog Mater Sci 104:138–214. https://doi.org/10.1016/j.pmatsci.2019.04.004

    Article  CAS  Google Scholar 

  12. Wang L, Jiang L, Zhang T, Gao F, Chen S, Yang W (2019) Graphene/SiC heterojunction nanoarrays: toward field emission applications with low turn-on fields and high stabilities. J Mater Chem C 7:13748–13753. https://doi.org/10.1039/C9TC05035C

    Article  CAS  Google Scholar 

  13. Eddy CR, Gaskill DK (2009) Silicon carbide as a platform for power electronics. Science 324(5933):1398–1400. https://doi.org/10.1126/science.1168704

    Article  CAS  Google Scholar 

  14. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975. https://doi.org/10.1126/science.277.5334.1971

    Article  CAS  Google Scholar 

  15. Shor JS, Goldstein D, Kurtz AD (1993) Characterization of n-type β-SiC as a piezoresistor. IEEE Trans Electron Devices 40(6):1093–1099. https://doi.org/10.1109/16.214734

    Article  CAS  Google Scholar 

  16. Chen J, Zhang J, Wang M, Li Y (2014) High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device. Sens Actuators B Chem 201:402–406. https://doi.org/10.1016/j.snb.2014.04.068

    Article  CAS  Google Scholar 

  17. Cui J, Zhang Z, Liu D, Zhang D, Hu W, Zou L, Lu Y, Zhang C, Lu H, Tang C, Jiang N, Parkin IP, Guo D (2019) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19(9):6569–6576. https://doi.org/10.1021/acs.nanolett.9b02821

    Article  CAS  Google Scholar 

  18. Feng XL, Matheny MH, Zorman CA, Mehregany M, Roukes ML (2010) Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett 10(8):2891–2896. https://doi.org/10.1021/nl1009734

    Article  CAS  Google Scholar 

  19. Li X, Tian Y, Gao F, Wang L, Chen S, Yang W (2018) Fabrication of N-doped 3C-SiC nanobelts with selected (11¯0) top surface and their enhanced transverse piezoresistance behaviours. Ceram Int 44(15):19021–19027. https://doi.org/10.1016/j.ceramint.2018.07.020

    Article  CAS  Google Scholar 

  20. Shao R, Zheng K, Zhang Y (2012) Piezoresistance behaviors of ultra-strained SiC nanowires. Appl Phys Lett 101(23):1409. https://doi.org/10.1063/1.4769217

    Article  CAS  Google Scholar 

  21. Nakamura K, Toriyama T, Sugiyama S (2011) First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. JAP J Appl Phys 50 (6):06GE05. https://doi.org/10.1143/jjap.50.06ge05

  22. Gao F, Zheng J, Wang M, Wei G, Yang W (2011) Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem Commun 47(43):11993–11995. https://doi.org/10.1039/c1cc14343c

    Article  CAS  Google Scholar 

  23. Bi J, Wei G, Wang L, Gao F, Zheng J, Tang B, Yang W (2013) Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J Mater Chem C 1(30):4514. https://doi.org/10.1039/c3tc30655k

    Article  CAS  Google Scholar 

  24. Cheng X, Wang L, Gao F, Yang W, Du Z, Chen D, Chen S (2019) The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires. J Mater Chem C 7(11):3181–3189. https://doi.org/10.1039/c8tc06623j

    Article  CAS  Google Scholar 

  25. Li X, Gao F, Wang L, Chen S, Deng B, Chen L, Lin CH, Yang W, Wu T (2020) Giant piezoresistance in B-doped SiC nanobelts with a gauge factor of −1800. ACS Appl Mater Interfaces 12(42):47848–47853. https://doi.org/10.1021/acsami.0c13800

    Article  CAS  Google Scholar 

  26. Phan HP, Viet Dao D, Tanner P, Wang L, Nguyen NT, Zhu Y, Dimitrijev S (2014) Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl Phys Lett 104(11):111905. https://doi.org/10.1063/1.4869151

    Article  CAS  Google Scholar 

  27. Copel M, Kuroda MA, Gordon MS, Liu XH, Mahajan SS, Martyna GJ, Moumen N, Armstrong C, Rossnagel SM, Shaw TM, Solomon PM, Theis TN, Yurkas JJ, Zhu Y, Newns DM (2013) Giant piezoresistive on/off ratios in rare-earth chalcogenide thin films enabling nanomechanical switching. Nano Lett 13(10):4650–4653. https://doi.org/10.1021/nl401710f

    Article  CAS  Google Scholar 

  28. Kim S, Dong Y, Hossain MM, Gorman S, Towfeeq I, Gajula D, Childress A, Rao AM, Koley G (2019) Piezoresistive graphene/P(VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl Mater Interfaces 11(17):16006–16017. https://doi.org/10.1021/acsami.9b01964

    Article  CAS  Google Scholar 

  29. Rajagopalan P, Singh V, Palani IA (2018) Enhancement of ZnO based flexible nano generators via sol gel technique for sensing and energy harvesting applications. Nanotechnology 29(10):105406. https://doi.org/10.1088/1361-6528/aaa6bd

    Article  CAS  Google Scholar 

  30. Wu W, Wen X, Wang ZL (2013) Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135):952–957. https://doi.org/10.1126/science.1234855

    Article  CAS  Google Scholar 

  31. Flemban TH, Singaravelu V, Devi AAS, Roqan IS (2015) Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer. RSC Adv 5(115):94670–94678. https://doi.org/10.1039/c5ra19798h

    Article  CAS  Google Scholar 

  32. Koumoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) High-resolution electron microscopy observations of stacking faults in β-SiC. J Am Ceram Soc 72(10):1985–1987. https://doi.org/10.1111/j.1151-2916.1989.tb06014.x

    Article  CAS  Google Scholar 

  33. Zhang ZY, Jin CH, Liang XL, Chen Q, Peng LM (2006) Current-voltage characteristics and parameter retrieval of semiconducting nanowires. Appl Phys Lett 88(7):073102. https://doi.org/10.1063/1.2177362

    Article  CAS  Google Scholar 

  34. Liu KH, Gao P, Xu Z, Bai XD, Wang EG (2008) In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope. Appl Phys Lett 92(21):213105. https://doi.org/10.1063/1.2936080

    Article  CAS  Google Scholar 

  35. Li X, Chen S, Ying P, Gao F, Liu Q, Shang M, Yang W (2016) A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. J Mater Chem C 4(27):6466–6472. https://doi.org/10.1039/c6tc01882c

    Article  CAS  Google Scholar 

  36. Wu J, Gao F, Shao G, Du Z, Yang W, Wang L, Wang Z, Chen S (2020) Enhanced piezoresistive behavior of SiC nanowire by coupling with piezoelectric effect. ACS Appl Mater Interfaces 12(19):21903–21911. https://doi.org/10.1021/acsami.0c04111

    Article  CAS  Google Scholar 

  37. Li X, Gao F, Wang L, Jiang L, Chen S, Yang W (2019) Enhanced piezoresistive performance of 3C-SiC nanowires by coupling with ultraviolet illumination. J Mater Chem C 7:13384–13389. https://doi.org/10.1039/c9tc04116h

    Article  CAS  Google Scholar 

  38. Phan HP, Dinh T, Kozeki T, Nguyen TK, Qamar A, Namazu T, Nguyen NT, Dao DV (2016) The piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires. IEEE Electron Device Lett 37(8):1029–1032. https://doi.org/10.1109/led.2016.2579020

    Article  CAS  Google Scholar 

  39. Liu S, Wang L, Wang Z, Cai Y, Feng X, Qin Y, Wang ZL (2018) Double-channel piezotronic transistors for highly sensitive pressure sensing. ACS Nano 12(2):1732–1738. https://doi.org/10.1021/acsnano.7b08447

    Article  CAS  Google Scholar 

  40. Zhang Y, Liu Y, Wang ZL (2011) Fundamental theory of piezotronics. Adv Mater 23(27):3004–3013. https://doi.org/10.1002/adma.201100906

    Article  CAS  Google Scholar 

  41. Asthana A, Ardakani HA, Yap YK, Yassar RS (2014) Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J Mater Chem C 2(20):3995–4004. https://doi.org/10.1039/c4tc00032c

    Article  CAS  Google Scholar 

  42. Wang L, Liu S, Feng X, Xu Q, Bai S, Zhu L, Chen L, Qin Y, Wang ZL (2017) Ultrasensitive vertical piezotronic transistor based on ZnO twin nanoplatelet. ACS Nano 11(5):4859–4865. https://doi.org/10.1021/acsnano.7b01374

    Article  CAS  Google Scholar 

  43. Zhang X, Liu B, Yang W, Jia W, Li J, Jiang C, Jiang X (2016) 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 8(40):17573–17580. https://doi.org/10.1039/c6nr06236a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51702175 and 51702174), the Natural Science Foundation of Zhejiang Province (Grant No. Y21E020008) and the Natural Science Foundation of the Ningbo Municipal Government (Grant No. 2019A610049).

Author information

Authors and Affiliations

Authors

Contributions

LW contributed to investigation, writing—original draft, methodology. JW helped in writing—review and editing and methodology. MS, FG, and XL helped in writing—review and editing and data curation. YZ and DZ wrote the review and edited. WY helped in conceptualization, supervision, writing—review and editing. SC contributed to conceptualization, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Shanliang Chen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, J., Shang, M. et al. Improved piezoresistive properties of ZnO/SiC nanowire heterojunctions with an optimized piezoelectric nanolayer. J Mater Sci 56, 17146–17155 (2021). https://doi.org/10.1007/s10853-021-06411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06411-1

Navigation