Skip to main content
Log in

Structural characterization and magnetic behavior of nickel nanoparticles encapsulated in monolithic wood-derived porous carbon

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a new environmentally friendly and simple method to produce monolithic magnetic composites C/Ni nanoparticles (NiNPs) consisting of highly porous carbon matrix and well-separated Ni nanoparticles covered by graphite-like shells. The method is based on the carbonization of wood with addition of nickel nitrate and wood decomposition product (tar) as a binder. The specific structural features and magnetic properties of the C/NiNPs composites are systematically investigated. We have demonstrated the change in average size of NiNPs from ~ 9 to ~ 18 nm and in their magnetic character from superparamagnetic to ferromagnetic behavior by changing the pyrolysis temperature. The macroscopic magnetization 3.5 emu/g (38 emu/g(Ni)) of the obtained porous monolithic nanocomposites with small amount of nickel (8.8 wt.%) in low magnetic field and their ferromagnetic behavior at room temperature make them ideal candidates for use in applications involving magnetic separation (heterogeneous catalysis, adsorption of contaminants in aqueous media, etc.). The resulting maximum magnetization 38 emu/g(Ni) of carbon-encapsulated NiNPs is comparable and even somewhat exceeds that of similar core–shell Ni nanoparticles obtained by other methods. The fundamental question arises whether it is possible to achieve the magnetization for carbon-encapsulated NiNPs as that in the bulk Ni.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. https://doi.org/10.1007/s10853-021-06127-2

    Article  CAS  Google Scholar 

  2. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  3. Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. https://doi.org/10.1016/j.trac.2014.06.016

    Article  CAS  Google Scholar 

  4. Dumitrescu AM, Lisa G, Iordan AR, Tudorache F, Petrila I, Borhan A, Palamaru M, Mihailescu C, Leontie L, Munteanu C (2015) Ni ferrite highly organized as humidity sensors. Mater Chem Phys 156:170–179. https://doi.org/10.1016/j.matchemphys.2015.02.044

    Article  CAS  Google Scholar 

  5. Wang Ch, Murugadoss V, Kong J, He Zh, Mai X, Shao Q, Chen Y, Guo L, Liu Ch, Angaiah S, Guo Zh (2018) Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140:696–733. https://doi.org/10.1016/j.carbon.2018.09.006

    Article  CAS  Google Scholar 

  6. Doyle PS, Bibette J, Bancaud A, Viovy JL (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295:2237. https://doi.org/10.1126/science.1068420

    Article  CAS  Google Scholar 

  7. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants. Carbon 40:2177–2183. https://doi.org/10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  8. Lu AH, Li EC, Matoussevitch N, Spliethoff B, Bonnemann H, Schuth F (2005) Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun 1:98–100. https://doi.org/10.1039/B414146F

    Article  Google Scholar 

  9. Wang ZH, Choi CJ, Kim BK, Kim JC, Zhang ZD (2003) Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor condensation process. Carbon 41(9):1751–1758. https://doi.org/10.1016/S0008-6223(03)00127-1

    Article  CAS  Google Scholar 

  10. Ang KH, Alexandrou I, Mathur ND, Amaratunga GAJ, Haq S (2004) The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology 15:520–524. https://doi.org/10.1088/0957-4484/15/5/020

    Article  CAS  Google Scholar 

  11. Park JB, Jeong SH, Jeong MS, Kim JY, Cho BK (2008) Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution. Carbon 46:1369–1377. https://doi.org/10.1016/j.carbon.2008.05.011

    Article  CAS  Google Scholar 

  12. Makarewicz M, Podsiadly M, Balanda M (2009) Magnetic investigation of carbon coated Co- Ni- and Fe-nanoparticles. Acta Phys Pol A 115(2):568–571. https://doi.org/10.12693/APhysPolA.115.568

    Article  CAS  Google Scholar 

  13. He CN, Du XW, Ding J, Shi CS, Li JJ, Zhao NQ, Cui L (2006) Low temperature CVD synthesis of carbon-encapsulated magnetic Ni nanoparticles with a narrow distribution of diameters. Carbon 44:2330–2356. https://doi.org/10.1016/j.carbon.2006.05.034

    Article  CAS  Google Scholar 

  14. Gorria P, Sevilla M, Blanco JA, Fuertes AB (2006) Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. Carbon 44:1954–1957. https://doi.org/10.1016/j.carbon.2006.02.013

    Article  CAS  Google Scholar 

  15. Wanga DW, Li F, Lub GQ, Cheng HM (2008) Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon. Carbon 46:1593–1599. https://doi.org/10.1016/j.carbon.2008.06.052

    Article  CAS  Google Scholar 

  16. Fernandez-García MP, Gorria P, Sevilla M, Proenca MP, Boada R, Chaboy J, Fuertes AB, Blanco JA (2011) Enhanced protection of carbon-encapsulated magnetic nickel nanoparticles through a sucrose-based synthetic strategy. J Phys Chem C 115:5294–5300. https://doi.org/10.1021/jp109669t

    Article  CAS  Google Scholar 

  17. El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Buchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828. https://doi.org/10.1016/j.carbon.2009.06.025

    Article  CAS  Google Scholar 

  18. Sun XC, Dong XL (2002) Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater Res Bull 37(5):991–1004. https://doi.org/10.1016/S0025-5408(02)00702-X

    Article  CAS  Google Scholar 

  19. Gutierrez-Pardo A, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J (2014) Characterization of porous graphitic monoliths from pyrolyzed wood. J Mater Sci 49:7688–7696. https://doi.org/10.1007/s10853-014-8477-8

    Article  CAS  Google Scholar 

  20. Orlova TS, Spitsyn AA, Ponomarev DA, Kirilenko DA, Romanov AE (2019) A new hybrid material: monolithic biomorphic carbon/nickel nanoparticles for energy storage devices. Tech Phys Lett 45(8):809–813. https://doi.org/10.1134/S1063785019080297

    Article  CAS  Google Scholar 

  21. Johnson MT, Faber KT (2011) Catalytic graphitization of three-dimensional wood-derived porous scaffolds. J Mater Res 26(1):18–25. https://doi.org/10.1557/jmr.2010.88

    Article  CAS  Google Scholar 

  22. Gutierrez-Pardo A, Ramirez-Rico J, Cabezas-Rodriguez R, Martinez-Fernandez J (2015) Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. J Power Sources 278:18–26. https://doi.org/10.1016/j.jpowsour.2014.12.030

    Article  CAS  Google Scholar 

  23. Chu KN, Spitsyn AA, Romanenko KA, Ponomarev DA (2018) Steam-gas activation of charcoal from bamboo. Lesnoy Zhurnal 4:140–149. https://doi.org/10.17238/issn0536-1036.2018.4.140

    Article  CAS  Google Scholar 

  24. R. Ripan, I. Chetyanu. Inorganic chemistry. Chemistry of metals. Vol. 2. Moscow: Mir. (1972) 871 p. (In Russian)

  25. T.S. Orlova, V.V. Shpeizman, N.V. Glebova, A.A. Nechitailov, A.A. Spitsyn, D.A. Ponomarev, A. Gutierrez-Pardo, J. Ramirez-Rico (2018) Enviromentally friendly monolithic highly-porous biocarbons as binder-free supercapacitor electrodes. Rev. Adv. Mater. Sci. 55:50–60. https://www.ipme.ru/e-journals/RAMS/no_15518/06_15518_orlova.pdf

  26. Sinclair R, Itoh T, Chin R (2002) In situ TEM studies of metal-carbon reactions. Microsc Microanal 8(4):288–304. https://doi.org/10.1017/S1431927602020226

    Article  CAS  Google Scholar 

  27. Sevilla M, Sanchis C, Valdes-Solis T, Morallon E, Fuertes AB (2007) Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports. J Phys Chem C 111(27):9749–9756. https://doi.org/10.1021/jp072246x

    Article  CAS  Google Scholar 

  28. Makarova TL (2004) Magnetic properties of carbon structures. Semiconductors 38(6):615–638. https://doi.org/10.1134/1.1766362

    Article  CAS  Google Scholar 

  29. Rode AV, Gamaly EG, Christy AG, Fitz Gerald J, Hyde ST, Elliman RG, Luther-Davies B, Veinger AI, Androulakis J, Giapintzakis J (2005) Strong paramagnetism and possible ferromagnetism in pure carbon nanofoam produced by laser ablation. J Magn Magn Mater 290:298–301. https://doi.org/10.1016/j.jmmm.2004.11.213

    Article  CAS  Google Scholar 

  30. Schaefer H-E, Kisker H, Kronmuller H, Wurschum R (1992) Magnetic properties of nanocrystalline nickel. Nano Struct Mater 1:523–529. https://doi.org/10.1016/0965-9773(92)90085-C

    Article  CAS  Google Scholar 

  31. Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–514. https://doi.org/10.1070/RC2005v074n06ABEH000897

    Article  CAS  Google Scholar 

  32. A.M. Prudnikov, R.V. Shalaev, A.I. Linnik, V.N. Varyukhin, M.I. Pasko (2016) The role of carbon in the formation of nanostructure and magnetic properties of hybrid Ni – C films Fizika i technika vysokih davlenii 26(1–2):46–58. http://nbuv.gov.ua/UJRN/PhTVD_2016_26_1-2_6 (In Russian)

  33. S.I. Novikov. A.S. Konev, M.A. Uymin M., A.E. Ermakov, D.V. Privalova, V.V. Maikov (2017) Magnetic properties of Ni@C nanocomposites. Int J Appl Fundam Res, 12:247–251. https://applied-research.ru/ru/article/view?id=12028 (In Russian)

  34. Tsurin VA, Ye A, Yermakov MA, Uimin AA, Mysik NN, Shchegoleva VSG, Maikov VV (2014) Synthesis, structure, and magnetic properties of iron and nickel nanoparticles encapsulated into carbon. Phys Solid State 56(2):287–301. https://doi.org/10.1134/S1063783414020309

    Article  CAS  Google Scholar 

  35. Kumar A, Tandon RP, Awana VPS (2012) Successive spin glass, cluster ferromagnetic, and superparamagnetic transitions in RuSr2Y1.5Ce0.5Cu2O10 complex magneto-superconductor. Eur Phys J B 85:1–10. https://doi.org/10.1140/epjb/e2012-30075-5

    Article  CAS  Google Scholar 

  36. Liu X, Huang K, Zhou S, Zhao P, Meridor U, Frydman A, Gedanken A (2006) Phase transition from the ferromagnetic to superparamagnetic with a loop shift in 5-nm nickel particles. J Magn Magn Mater 305:504–508. https://doi.org/10.1016/j.jmmm.2006.02.091

    Article  CAS  Google Scholar 

  37. Chien CL (1991) Granular magnetic solids. J Appl Phys 69(8):5267–5272. https://doi.org/10.1063/1.348946

    Article  CAS  Google Scholar 

  38. Hansen MF, Morup S (1999) Estimation of blocking temperatures from ZFC/FC curves. J Magn Magn Mater 203:214–216. https://doi.org/10.1016/S0304-8853(99)00238-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The structural characterization was performed using equipment owned by the Joint Research Center “Material science and characterization in advanced technology” (Ioffe Institute, St.-Petersburg, Russia). We are grateful to A.V. Nashchekin for SEM investigations.

Author information

Authors and Affiliations

Authors

Contributions

VVP involved in magnetic measurements and theoretical estimations; conceptualization, and writing and review. AAS involved in preparation of C/NiNPs composites and participation in writing. DAP involved in editing manuscript. DAK involved in TEM investigations and microstructure characterization. TSO involved in conceptualization, writing, review and editing, and microstructure characterization.

Corresponding author

Correspondence to T. S. Orlova.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Spitsyn, A.A., Ponomarev, D.A. et al. Structural characterization and magnetic behavior of nickel nanoparticles encapsulated in monolithic wood-derived porous carbon. J Mater Sci 56, 18493–18507 (2021). https://doi.org/10.1007/s10853-021-06409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06409-9

Navigation