Nicola M, Alsafi Z, Sohrabi C et al (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg 78:185–193. https://doi.org/10.1016/j.ijsu.2020.04.018
Article
Google Scholar
Smith KM, Machalaba CC, Seifman R et al (2019) Infectious disease and economics: the case for considering multi-sectoral impacts. One Heal 7:100080. https://doi.org/10.1016/j.onehlt.2018.100080
Article
Google Scholar
Rai NK, Ashok A, Akondi BR (2020) Consequences of chemical impact of disinfectants: safe preventive measures against COVID-19. Crit Rev Toxicol 50:513–520. https://doi.org/10.1080/10408444.2020.1790499
CAS
Article
Google Scholar
Sun Z, Ostrikov K, (Ken), (2020) Future antiviral surfaces: lessons from COVID-19 pandemic. Sustain Mater Technol 25:e00203. https://doi.org/10.1016/j.susmat.2020.e00203
CAS
Article
Google Scholar
Chin AWH, Chu JTS, Perera MRA et al (2020) Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 1:e10. https://doi.org/10.1016/s2666-5247(20)30003-3
CAS
Article
Google Scholar
Mahmood A, Eqan M, Pervez S et al (2020) COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci Total Environ 742:140561. https://doi.org/10.1016/j.scitotenv.2020.140561
CAS
Article
Google Scholar
Elbourne A, Crawford RJ, Ivanova EP (2017) Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci 508:603–616. https://doi.org/10.1016/j.jcis.2017.07.021
CAS
Article
Google Scholar
Elena P, Miri K (2018) Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surfaces B Biointerfaces 169:195–205. https://doi.org/10.1016/j.colsurfb.2018.04.065
CAS
Article
Google Scholar
Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7:9804–9828. https://doi.org/10.1039/c1sm05849e
CAS
Article
Google Scholar
Li Z, Guo Z (2019) Bioinspired surfaces with wettability for antifouling application. Nanoscale 11:22636–22663. https://doi.org/10.1039/c9nr05870b
CAS
Article
Google Scholar
Ding X, Duan S, Ding X et al (2018) Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv Funct Mater 28:1–19. https://doi.org/10.1002/adfm.201802140
CAS
Article
Google Scholar
Zou Y, Zhang Y, Yu Q, Chen H (2021) Dual-function antibacterial surfaces to resist and kill bacteria: painting a picture with two brushes simultaneously. J Mater Sci Technol 70:24–38. https://doi.org/10.1016/j.jmst.2020.07.028
Article
Google Scholar
Wei T, Yu Q, Chen H (2019) Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv Healthc Mater 8:1–24. https://doi.org/10.1002/adhm.201801381
CAS
Article
Google Scholar
Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020. https://doi.org/10.1039/c3ra40497h
CAS
Article
Google Scholar
Zhang G, Meredith TC, Kahne D (2013) On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 16:779–785. https://doi.org/10.1016/j.mib.2013.09.007
CAS
Article
Google Scholar
Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol Microbiol 37:239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
CAS
Article
Google Scholar
Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368–4380. https://doi.org/10.1039/c3sm27705d
CAS
Article
Google Scholar
Köhler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:1–22. https://doi.org/10.1101/cshperspect.a019273
CAS
Article
Google Scholar
Talbot NJ (1997) Fungal biology: growing into the air. Curr Biol 7:78–81. https://doi.org/10.1016/s0960-9822(06)00041-8
Article
Google Scholar
Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594. https://doi.org/10.1016/j.mib.2006.10.003
CAS
Article
Google Scholar
Lagree K, Mitchell AP (2017) Fungal biofilms: inside out. Fungal Kingdom 5:873–886. https://doi.org/10.1128/9781555819583.ch42
Article
Google Scholar
Frank Fenner, Peter A.Bachmann, E. Paul J.Gibbs, Frederick A.Murphy, Michael J.Studdert DOW (1987) Structure and Composition of Viruses. In: Veterinary Virology. pp 3–19
Villanueva RA, Rouillé Y, Dubuisson J (2005) Interactions between virus proteins and host cell membranes during the viral life cycle. Int Rev Cytol 245:171–244. https://doi.org/10.1016/S0074-7696(05)45006-8
CAS
Article
Google Scholar
Thoulouze MI, Alcover A (2011) Can viruses form biofilms? Trends Microbiol 19:257–262. https://doi.org/10.1016/j.tim.2011.03.002
CAS
Article
Google Scholar
Mbithi JN, Springthorpe VS, Boulet JR, Sattar SA (1992) Survival of hepatitis a virus on human hands and its transfer on contact with animate and inanimate surfaces. J Clin Microbiol 30:757–763. https://doi.org/10.1128/jcm.30.4.757-763.1992
CAS
Article
Google Scholar
Tiwari A, Patnayak DP, Chander Y et al (2006) Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis 50:284–287. https://doi.org/10.1637/7453-101205R.1
CAS
Article
Google Scholar
Winther B, McCue K, Ashe K, Rubino JR, JOH (2007) Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity. J Med Virol 79:1606–1610. https://doi.org/10.1002/jmv
Article
Google Scholar
AssadianO AK (2014) Survival of microorganisms on inanimate surfaces. Use Biocidal Surfaces Reduct Healthc Acquir Infect. https://doi.org/10.1007/978-3-319-08057-4
Article
Google Scholar
Donlan RM (2002) Biofilms: microbial life on surfaces rodney. Emerg Infect Dis 8:881–890
Article
Google Scholar
Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95:299–311. https://doi.org/10.1007/s00253-012-4144-7
CAS
Article
Google Scholar
Costa-orlandi CB, Sardi JCO, Pitangui NS et al (2017) Fungal biofilms and polymicrobial diseases. J Fungi 3:1–24. https://doi.org/10.3390/jof3020022
CAS
Article
Google Scholar
Maali Y, Mahieux R, Dutartre H (2020) Microbial biofilms: HTLV-1 first in line for viral biofilm but far behind bacterial biofilms. Front Microbiol. https://doi.org/10.3389/fmicb.2020.02041
Article
Google Scholar
Kochkodan V, Tsarenko S, Potapchenko N et al (2008) Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220:380–385. https://doi.org/10.1016/j.desal.2007.01.042
CAS
Article
Google Scholar
Giaouris E, Chapot-Chartier MP, Briandet R (2009) Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131:2–9. https://doi.org/10.1016/j.ijfoodmicro.2008.09.006
CAS
Article
Google Scholar
Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:1–16
Article
Google Scholar
Arkhipenko MV, Nikitin NA, Baranov OA et al (2019) Surface charge mapping on virions and virus-like particles of helical plant viruses. Acta Naturae 11:73–78. https://doi.org/10.32607/20758251-2019-11-4-73-78
CAS
Article
Google Scholar
Hernando-Pérez M, Cartagena-Rivera AX, Lošdorfer Božič A et al (2015) Quantitative nanoscale electrostatics of viruses. Nanoscale 7:17289–17298. https://doi.org/10.1039/c5nr04274g
Article
Google Scholar
Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740. https://doi.org/10.1128/jb.180.15.3735-3740.1998
CAS
Article
Google Scholar
An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion. J Biomed Mater Res 43:338–348
CAS
Article
Google Scholar
Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:1–7. https://doi.org/10.3389/fcimb.2014.00112
Article
Google Scholar
Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnology 15:1–20. https://doi.org/10.1186/s12951-017-0306-1
CAS
Article
Google Scholar
Kelleher SM, Habimana O, Lawler J et al (2016) Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces 8:14966–14974. https://doi.org/10.1021/acsami.5b08309
CAS
Article
Google Scholar
Bandara CD, Singh S, Afara IO et al (2017) Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli. ACS Appl Mater Interfaces 9:6746–6760. https://doi.org/10.1021/acsami.6b13666
CAS
Article
Google Scholar
Mainwaring DE, Nguyen SH, Webb H et al (2016) The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. Nanoscale 8:6527–6534. https://doi.org/10.1039/c5nr08542j
CAS
Article
Google Scholar
Watson GS, Green DW, Schwarzkopf L et al (2015) A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater 21:109–122. https://doi.org/10.1016/j.actbio.2015.03.007
CAS
Article
Google Scholar
Hasan J, Webb HK, Truong VK et al (2013) Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol 97:9257–9262. https://doi.org/10.1007/s00253-012-4628-5
CAS
Article
Google Scholar
Yang M, Ding Y, Ge X, Leng Y (2015) Control of bacterial adhesion and growth on honeycomb-like patterned surfaces. Coll Surfaces B Biointerfaces 135:549–555. https://doi.org/10.1016/j.colsurfb.2015.08.010
CAS
Article
Google Scholar
Ge X, Leng Y, Lu X et al (2015) Bacterial responses to periodic micropillar array. J Biomed Mater Res - Part A 103:384–396. https://doi.org/10.1002/jbm.a.35182
CAS
Article
Google Scholar
Ge X, Ren C, Ding Y et al (2019) Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications. Bioact Mater 4:346–357. https://doi.org/10.1016/j.bioactmat.2019.10.006
Article
Google Scholar
Ivanova EP, Hasan J, Webb HK, et al (2013) Bactericidal activity of black silicon. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3838
CAS
Article
Google Scholar
Rosenzweig R, Marshall M, Parivar A et al (2019) Biomimetic nanopillared surfaces inhibit drug resistant filamentous fungal growth. ACS Appl Bio Mater 2:3159–3163. https://doi.org/10.1021/acsabm.9b00290
CAS
Article
Google Scholar
Dickson MN, Liang EI, Rodriguez LA et al (2015) Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:021010. https://doi.org/10.1116/1.4922157
CAS
Article
Google Scholar
Hasan J, Xu Y, Yarlagadda T et al (2020) Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater Sci Eng 6:3608–3618. https://doi.org/10.1021/acsbiomaterials.0c00348
CAS
Article
Google Scholar
Hasan J, Pyke A, Nair N et al (2020) Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2. ACS Biomater Sci Eng 6:4858–4861. https://doi.org/10.1021/acsbiomaterials.0c01091
CAS
Article
Google Scholar
Chien HW, Chen XY, Tsai WP, Lee M (2020) Inhibition of biofilm formation by rough shark skin-patterned surfaces. Coll Surfaces B Biointerfaces 186:110738. https://doi.org/10.1016/j.colsurfb.2019.110738
CAS
Article
Google Scholar
Ivanova EP, Hasan J, Webb HK et al (2013) Bactericidal activity of black silicon. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3838
CAS
Article
Google Scholar
Cui Q, Liu T, Li X et al (2020) Nanopillared polycarbonate surfaces having variable feature parameters as bactericidal coatings. ACS Appl Nano Mater 3:4599–4609. https://doi.org/10.1021/acsanm.0c00645
CAS
Article
Google Scholar
Nowlin K, Boseman A, Covell A, LaJeunesse D (2014) Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces. J R Soc Interface. https://doi.org/10.1098/rsif.2014.0999
Article
Google Scholar
Wong SY, Li Q, Veselinovic J et al (2010) Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 31:4079–4087. https://doi.org/10.1016/j.biomaterials.2010.01.119
CAS
Article
Google Scholar
Jin C, Su K, Tan L et al (2019) Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Mater Des 177:107845. https://doi.org/10.1016/j.matdes.2019.107845
CAS
Article
Google Scholar
Xu Q, Yang C, Hedrick JL, Yang YY (2016) Antimicrobial silica particles synthesized via ring-opening grafting of cationic amphiphilic cyclic carbonates: effects of hydrophobicity and structure. Polym Chem 7:2192–2201. https://doi.org/10.1039/c6py00194g
CAS
Article
Google Scholar
Lin J, Qiu S, Lewis K, Klibanov AM (2003) Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83:168–172. https://doi.org/10.1002/bit.10651
CAS
Article
Google Scholar
De Souza E, Silva JM, Hanchuk TDM, Santos MI et al (2016) Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interfaces 8:16564–16572. https://doi.org/10.1021/acsami.6b03342
CAS
Article
Google Scholar
Meder F, Wehling J, Fink A et al (2013) The role of surface functionalization of colloidal alumina particles on their controlled interactions with viruses. Biomaterials 34:4203–4213. https://doi.org/10.1016/j.biomaterials.2013.02.059
CAS
Article
Google Scholar
Donskyi IS, Azab W, Cuellar-Camacho JL et al (2019) Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. Nanoscale 11:15804–15809. https://doi.org/10.1039/c9nr05273a
CAS
Article
Google Scholar
Tuladhar E, de Koning MC, Fundeanu I, et al. (2012) Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol. 78:2456–2458. doi: https://doi.org/10.1128/AEM.07738-11
Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds - A critical review. Int J Antimicrob Agents 39:381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011
CAS
Article
Google Scholar
Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. https://doi.org/10.1016/j.tibtech.2013.01.017
CAS
Article
Google Scholar
Qi Z, Bharate P, Lai CH et al (2015) Multivalency at Interfaces: supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection. Nano Lett 15:6051–6057. https://doi.org/10.1021/acs.nanolett.5b02256
CAS
Article
Google Scholar
Zou Y, Zhang Y, Yu Q, Chen H (2021) Photothermal bactericidal surfaces: Killing bacteria using light instead of biocides. Biomater Sci 9:10–22. https://doi.org/10.1039/d0bm00617c
CAS
Article
Google Scholar
Yang J, Sun L, Hui S et al (2021) Ag functionalized SnS 2 with enhanced photothermal activity for safe and efficient wound disinfection. Biomater Sci 9:1–9. https://doi.org/10.1039/d1bm00429h
CAS
Article
Google Scholar
Lei W, Ren K, Chen T et al (2016) Polydopamine nanocoating for effective photothermal killing of bacteria and fungus upon near-infrared irradiation. Adv Mater Interfaces 3:1–6. https://doi.org/10.1002/admi.201600767
CAS
Article
Google Scholar
Ellinas K, Kefallinou D, Stamatakis K et al (2017) Is there a threshold in the antibacterial action of superhydrophobic surfaces ? ACS Appl Mater Interfaces 9:39781–39789. https://doi.org/10.1021/acsami.7b11402
CAS
Article
Google Scholar
Singh VP, Sandeep K, Kushwaha HS et al (2018) Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Constr Build Mater 158:285–294. https://doi.org/10.1016/j.conbuildmat.2017.10.035
CAS
Article
Google Scholar
Kim MG, Kang JM, Lee JE et al (2021) Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles. ACS Omega 6:10668–10678. https://doi.org/10.1021/acsomega.1c00043
CAS
Article
Google Scholar
Xue Y, Xiao H (2015) Antibacterial/antiviral property and mechanism of dual-functional quaternized pyridinium-type copolymer. Polymers (Basel) 7:2290–2303. https://doi.org/10.3390/polym7111514
CAS
Article
Google Scholar
Fernandes SCM, Sadocco P, Alonso-Varona A et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. https://doi.org/10.1021/am400338n
CAS
Article
Google Scholar
Hou S, Xing J, Dong X et al (2017) Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups. J Colloid Interface Sci 500:333–340. https://doi.org/10.1016/j.jcis.2017.04.028
CAS
Article
Google Scholar
Hoque J, Akkapeddi P, Yadav V et al (2015) Broad spectrum antibacterial and antifungal polymeric paint materials: Synthesis, structure-activity relationship, and membrane-active mode of action. ACS Appl Mater Interfaces 7:1804–1815. https://doi.org/10.1021/am507482y
CAS
Article
Google Scholar
Botequim D, Maia J, Lino MMF et al (2012) Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir 28:7646–7656. https://doi.org/10.1021/la300948n
CAS
Article
Google Scholar
Li M, Li L, Su K et al (2019) Highly effective and noninvasive near-infrared eradication of a staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv Sci 6:1–16. https://doi.org/10.1002/advs.201900599
CAS
Article
Google Scholar
Wang X, Su K, Tan L et al (2019) Rapid and highly effective noninvasive disinfection by hybrid Ag/CS@MnO 2 nanosheets using near-infrared light. ACS Appl Mater Interfaces 11:15014–15027. https://doi.org/10.1021/acsami.8b22136
CAS
Article
Google Scholar
Chen Y, Tang X, Gao X et al (2019) Antimicrobial property and photocatalytic antibacterial mechanism of the TiO2-doped SiO2 hybrid materials under ultraviolet-light irradiation and visible-light irradiation. Ceram Int 45:15505–15513. https://doi.org/10.1016/j.ceramint.2019.05.054
CAS
Article
Google Scholar
Mahanta U, Khandelwal M, Deshpande AS (2019) Wetting transition from lotus leaf to rose petal using modified fly ash. ChemistrySelect 4:7936–7942. https://doi.org/10.1002/slct.201901535
CAS
Article
Google Scholar
Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3:671–690. https://doi.org/10.1039/C2RA21260A
CAS
Article
Google Scholar
Hizal F, Rungraeng N, Lee J et al (2017) Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. ACS Appl Mater Interfaces 9:12118–12129. https://doi.org/10.1021/acsami.7b01322
CAS
Article
Google Scholar
Privett BJ, Youn J, Hong SA et al (2011) Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir 27:9597–9601. https://doi.org/10.1021/la201801e
CAS
Article
Google Scholar
Kim Y, Hwang W (2015) Wettability modified aluminum surface for a potential antifungal surface. Mater Lett 161:234–239. https://doi.org/10.1016/j.matlet.2015.08.103
CAS
Article
Google Scholar
Meguid SA, Elzaabalawy A (2020) Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part I—protection strategies against fomites. Int J Mech Mater Des 16:423–431. https://doi.org/10.1007/s10999-020-09513-x
CAS
Article
Google Scholar
Katoh I, Tanabe F, Kasai H et al (2019) Potential risk of virus carryover by fabrics of personal protective gowns. Front Public Heal 7:3–8. https://doi.org/10.3389/fpubh.2019.00121
Article
Google Scholar
Liu T, Yin B, He T et al (2012) Complementary effects of nanosilver and superhydrophobic coatings on the prevention of marine bacterial adhesion. ACS Appl Mater Interfaces 4:4683–4690. https://doi.org/10.1021/am301049v
CAS
Article
Google Scholar
Berendjchi A, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res Lett 6:1–8. https://doi.org/10.1186/1556-276X-6-594
Article
Google Scholar
Dimitrakellis P, Ellinas K, Kaprou GD et al (2021) Bactericidal action of smooth and plasma micro-nanotextured polymeric surfaces with varying wettability, enhanced by incorporation of a biocidal agent. Macromol Mater Eng 306:1–10. https://doi.org/10.1002/mame.202000694
CAS
Article
Google Scholar
Shateri Khalil-Abad M, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351:293–298. https://doi.org/10.1016/j.jcis.2010.07.049
CAS
Article
Google Scholar
Ellinas K, Kefallinou D, Stamatakis K et al (2017) Is there a threshold in the antibacterial action of superhydrophobic surfaces? ACS Appl Mater Interfaces 9:39781–39789. https://doi.org/10.1021/acsami.7b11402
CAS
Article
Google Scholar
Madaeni SS, Ghaemi N, Alizadeh A, Joshaghani M (2011) Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes. Appl Surf Sci 257:6175–6180. https://doi.org/10.1016/j.apsusc.2011.02.026
CAS
Article
Google Scholar
Nie Y, Kalapos C, Nie X et al (2010) Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface. Ann Clin Microbiol Antimicrob 9:25. https://doi.org/10.1186/1476-0711-9-25
CAS
Article
Google Scholar
Qian H, Yang J, Lou Y et al (2019) Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions. Appl Surf Sci 465:267–278. https://doi.org/10.1016/j.apsusc.2018.09.173
CAS
Article
Google Scholar
Yang WJ, Cai T, Neoh K et al (2011) Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 27:7065–7076
CAS
Article
Google Scholar
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE (2014) Surface-initiated polymer brushes in the biomedical field: applications in membrane science. Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. https://doi.org/10.1021/cr500252u
Article
Google Scholar
Tripathi BP, Dubey NC, Stamm M (2014) Polyethylene glycol cross-linked sulfonated polyethersulfone based fi ltration membranes with improved antifouling tendency. J Memb Sci 453:263–274. https://doi.org/10.1016/j.memsci.2013.11.007
CAS
Article
Google Scholar
Dong B, Manolache S, Wong ACL (2011) Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull. 66:517–528. https://doi.org/10.1007/s00289-010-0358-y
CAS
Article
Google Scholar
Lu M, Zhao J, Tu W et al (2017) Combined ‘spear and shield’: superhydrophilic antimicrobial and antifouling mesh membrane for efficient oil–water separation through facile and environmentally friendly strategy. J Coatings Technol Res 14:243–253. https://doi.org/10.1007/s11998-016-9834-0
CAS
Article
Google Scholar
Fadeeva E, Truong VK, Stiesch M et al (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. https://doi.org/10.1021/la104607g
CAS
Article
Google Scholar
Lin C, Tang P, Zhang W et al (2011) Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion. J Nanomater 2011:1–8. https://doi.org/10.1155/2011/178921
CAS
Article
Google Scholar
Crick CR, Ismail S, Pratten J, Parkin IP (2011) An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519:3722–3727. https://doi.org/10.1016/j.tsf.2011.01.282
CAS
Article
Google Scholar
Zhu P, Wang Y, Chu H, Wang L (2021) Superhydrophobicity preventing surface contamination as a novel strategy against COVID-19. J Colloid Interface Sci 600:613–619. https://doi.org/10.1016/j.jcis.2021.05.031
CAS
Article
Google Scholar
Wei T, Tang Z, Yu Q, Chen H (2017) Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl Mater Interfaces 9:37511–37523. https://doi.org/10.1021/acsami.7b13565
CAS
Article
Google Scholar
Yu Q, Ista LK, López GP (2014) Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties. Nanoscale 6:4750–4757. https://doi.org/10.1039/c3nr06497b
CAS
Article
Google Scholar
Yu Q, Cho J, Shivapooja P et al (2013) Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces 5:9295–9304. https://doi.org/10.1021/am4022279
CAS
Article
Google Scholar
Yan S, Shi H, Song L et al (2016) Nonleaching bacteria-responsive antibacterial surface based on a unique hierarchical architecture. ACS Appl Mater Interfaces 8:24471–24481. https://doi.org/10.1021/acsami.6b08436
CAS
Article
Google Scholar
Cheng G, Xue H, Zhang Z et al (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chemie - Int Ed 47:8831–8834. https://doi.org/10.1002/anie.200803570
CAS
Article
Google Scholar
Kim SH, Kang EB, Jeong CJ et al (2015) Light controllable surface coating for effective photothermal killing of bacteria. ACS Appl Mater Interfaces 7:15600–15606. https://doi.org/10.1021/acsami.5b04321
CAS
Article
Google Scholar
Wang Y, Wei T, Qu Y et al (2020) Smart, photothermally activated, antibacterial surfaces with thermally triggered bacteria-releasing properties. ACS Appl Mater Interfaces 12:21283–21291. https://doi.org/10.1021/acsami.9b17581
CAS
Article
Google Scholar
Qu Y, Wei T, Zhao J et al (2018) Regenerable smart antibacterial surfaces: Full removal of killed bacteria: via a sequential degradable layer. J Mater Chem B 6:3946–3955. https://doi.org/10.1039/c8tb01122b
CAS
Article
Google Scholar
Yang H, Li G, Stansbury JW et al (2016) Smart antibacterial surface made by photopolymerization. ACS Appl Mater Interfaces 8:28047–28054. https://doi.org/10.1021/acsami.6b09343
CAS
Article
Google Scholar
Wang Q, Feng Y, He M et al (2018) Thermoresponsive antibacterial surfaces switching from bacterial adhesion to bacterial repulsion. Macromol Mater Eng 303:1–10. https://doi.org/10.1002/mame.201700590
CAS
Article
Google Scholar
Qiao Z, Yao Y, Song S et al (2019) Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem B 7:830–840. https://doi.org/10.1039/c8tb02917b
CAS
Article
Google Scholar
Wei T, Zhan W, Yu Q, Chen H (2017) Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability. ACS Appl Mater Interfaces 9:25767–25774. https://doi.org/10.1021/acsami.7b06483
CAS
Article
Google Scholar
Wu J, Zhang D, Wang Y et al (2019) Electric assisted salt-responsive bacterial killing and release of polyzwitterionic brushes in low-concentration salt solution. Langmuir 35:8285–8293. https://doi.org/10.1021/acs.langmuir.9b01151
CAS
Article
Google Scholar
Fu Y, Wang Y, Huang L et al (2018) Salt-responsive “killing and release” antibacterial surfaces of mixed polymer brushes. Ind Eng Chem Res 57:8938–8945. https://doi.org/10.1021/acs.iecr.8b01730
CAS
Article
Google Scholar
Zhan W, Qu Y, Wei T et al (2018) Sweet switch: sugar-responsive bioactive surfaces based on dynamic covalent bonding. ACS Appl Mater Interfaces 10:10647–10655. https://doi.org/10.1021/acsami.7b18166
CAS
Article
Google Scholar
Wei T, Zhan W, Cao L et al (2016) Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl Mater Interfaces 8:30048–30057. https://doi.org/10.1021/acsami.6b11187
CAS
Article
Google Scholar
Zhou Y, Zheng Y, Wei T et al (2020) Multistimulus responsive biointerfaces with switchable bioadhesion and surface functions. ACS Appl Mater Interfaces 12:5447–5455. https://doi.org/10.1021/acsami.9b18505
CAS
Article
Google Scholar
Ni Y, Zhang D, Wang Y et al (2021) Host-guest interaction-mediated photo/temperature dual-controlled antibacterial surfaces. ACS Appl Mater Interfaces 13:14543–14551. https://doi.org/10.1021/acsami.0c21626
CAS
Article
Google Scholar
Yan S, Luan S, Shi H et al (2016) Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromol 17:1696–1704. https://doi.org/10.1021/acs.biomac.6b00115
CAS
Article
Google Scholar
Wang T, Wang C, Zhou S et al (2017) Nanovalves-based bacteria-triggered, self-defensive antibacterial coating: using combination therapy, dual stimuli-responsiveness, and multiple release modes for treatment of implant-associated infections. Chem Mater 29:8325–8337. https://doi.org/10.1021/acs.chemmater.7b02678
CAS
Article
Google Scholar
Luong-Van E, Rodriguez I, Low HY et al (2013) Review: micro-and nanostructured surface engineering for biomedical applications. J Mater Res 28:165–174. https://doi.org/10.1557/jmr.2012.398
CAS
Article
Google Scholar
Rawat S (2015) Food spoilage: microorganisms and their prevention. Pelagia Res Libr Asian J Plant Sci Res 5:47–56
CAS
Google Scholar
Casey GD, Dobson ADW (2003) Molecular detection of Candida krusei contamination in fruit juice using the citrate synthase gene cs1 and a potential role for this gene in the adaptive response to acetic acid. J Appl Microbiol 95:13–22. https://doi.org/10.1046/j.1365-2672.2003.01940.x
CAS
Article
Google Scholar
Dhanasekaran D, Thajuddin N, Rashmi M et al (2009) Screening of biofouling activity in marine bacterial isolate from ship hull. Int J Environ Sci Technol 6:197–202. https://doi.org/10.1007/BF03327622
CAS
Article
Google Scholar
Rajasekar A, Ting YP (2010) Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria bacillus cereus ACE4 and serratia marcescens ACE2. Ind Eng Chem Res 49:6054–6061. https://doi.org/10.1021/ie100078u
CAS
Article
Google Scholar
Otter JA, French GL (2009) Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London. Lett Appl Microbiol 49:803–805. https://doi.org/10.1111/j.1472-765X.2009.02728.x
CAS
Article
Google Scholar