Skip to main content
Log in

(La0.8Sr0.2)MnO3-Ni composite for the interconnect of solid oxide cells: effect of starting Ni particle size on sintering and electrical properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study demonstrates the feasibility of applying La0.8Sr0.2MnO3 (LSM)-Ni oxide-metal composite to an interconnect layer for anode-supported solid oxide cells (SOCs) operated at 700 °C. The sintering behavior of LSM-Ni composites and the electrical properties of LSM-Ni composite in both reducing and oxidizing atmospheres were systematically examined. The densification and final microstructure of LSM-Ni composites are tailored by varying the size and content of Ni particles. A part of smaller Ni particles reacts with LSM matrix and forms a second phase, Sr-doped La2NiO4. The addition of Sr to La2NiO4 decreases the melting temperature of La2NiO4, which causes the liquid phase sintering and increases the density of the sintered of LSM-Ni composites. It is also found that LSM-Ni composites are electrically conductive, regardless of the atmosphere. In oxidizing atmospheres, LSM perovskite serves as the major conductive matrix. In reducing atmospheres, on the other hand, embedded Ni forms metallic percolation path and compensates for the decrease in the electrical conductivity of reduced LSM ceramics. This LSM-Ni is used to coat the multilayer thick film of LSM-Ni and LSM. The multilayer film exhibits higher and more stable electric conductivity than the single layer thick film of LSM in a simulated SOC operation environment. This shows that LSM-Ni composite can be a useful component of the interconnect of SOC, which maintains the good electric conductivity in both air and H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Singhal SC, Kendall K (eds) (2003) High temperature solid oxide fuel cells: fundamentals. Design and Applications, Elsevier, Oxford, UK

    Google Scholar 

  2. Boaro M, Salvatore AA (2017) Advances in medium and high temperature solid oxide fuel cell technology. Springer International Publishing, Cham

    Book  Google Scholar 

  3. Williams MC, Strakey JP, Surdoval WA (2005) U.S. DOE fossil energy fuel cells program. J Power Sources 159:1241–1247

    Article  Google Scholar 

  4. Aznam I, Muchtar A, Somalu M, Ghazali M, Mah J, Mah W, Baharuddin NA (2018) Interconnect development for solid oxide fuel cell application. J Adv Res Fluid Mech Therm Sci 51:227–233

    Google Scholar 

  5. Yang Z (2008) Recent advances in metallic interconnects for solid oxide fuel cells. Int Mater Rev 53:39–54

    Article  CAS  Google Scholar 

  6. Wu J, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305

    Article  CAS  Google Scholar 

  7. Hilpert K, Das D, Miller M, Peck DP, Weib R (1996) Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J Electrochem Soc 143:3642–3647

    Article  CAS  Google Scholar 

  8. Simner SP, Anderson MD, Xia G-G, Yang Z, Pederson LR, Stevenson JW (2006) SOFC performance with Fe-Cr-Mn alloy interconnect. J Electrochem Soc A 152A:740–745

    Google Scholar 

  9. Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L, Hilpert K (2006) Chromium poisoning of perovskite cathodes by the ODS Alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU. J Electrochem Soc A 153A:765–773

    Article  Google Scholar 

  10. Tietz F, Buchkremer HP, Stöver D (2002) Components manufacturing for solid oxide fuel cells. Solid State Ionics 152–153:373–381

    Article  Google Scholar 

  11. Inagaki T, Nishiwaki F, Yamasaki S, Akbay T, Hosoi K (2008) Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte. J Power Sources 181:274–280

    Article  CAS  Google Scholar 

  12. Choi H-J, Kwak M, Kim TW, Seo D-W, Woo S-K, Kim S-D (2017) Redox stability of La0.6Sr0.4Fe1-xScxO3-δ for tubular solid oxide cells interconnector. Ceram Inter 43:7929–7934

    Article  CAS  Google Scholar 

  13. Moriche R, Marrero-López D, Gotor FJ, Sayagués MJ (2014) Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis. J Power Sources 252:43–50

    Article  CAS  Google Scholar 

  14. Zhou X-Y, Huang B-L, Zhang T-Y (2016) Size- and temperature-dependent young’s modulus and size-dependent thermal expansion coefficient of thin films. Phys Chem Chem Phys 18:21508–21517

    Article  CAS  Google Scholar 

  15. N. Gauquelin (2010) Impact of the structural anisotropy of La2NiO4+δ on high temperature surface modifications and diffusion of oxygen, (Doctoral dissertation)

  16. Meixner DL, Cutler RA (2002) Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics 146:273–284

    Article  CAS  Google Scholar 

  17. Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annual Rev Mate Res 40:131–151

    Article  CAS  Google Scholar 

  18. Last BJ, Thouless DJ (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719

    Article  CAS  Google Scholar 

  19. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905

    Article  CAS  Google Scholar 

  20. Liu X, Guo M, Zhang M, Wang X, Guo X, Chou K (2008) Effects of Pvp on the preparation and growth mechanism of monodispersed Ni nanoparticles. Rare Met 27(6):642–647

    CAS  Google Scholar 

  21. Cherepanov VA, Barkhatova LY, Voronin VI (1997) Phase equilibria in the La–Sr–Mn–O system. J Solid State Chem 134(1):38–44

    Article  CAS  Google Scholar 

  22. Yoon H, Kim T, Park S, Sammes NM, Chung J-S (2018) Stable LSM/LSTM Bi-layer interconnect for flat-tubular solid oxide fuel cells. Int J Hydrogen Energy 43(1):363–372

    Article  CAS  Google Scholar 

  23. Park B-K, Kim D-W, Song R-H, Lee S-B, Lim T-H, Park S-J, Park C-O, Lee J-W (2015) Design of a dual-layer ceramic interconnect based on perovskite oxides for segmented-in-series solid oxide fuel cells. J Power Sources 300:318–324

    Article  CAS  Google Scholar 

  24. Dong X, Wu Z, Chang X, Jin W, Xu N (2007) One-step synthesis and characterization of La2NiO4+Δ Mixed-conductive oxide for oxygen permeation. Ind Eng Chem Res 46(21):6910–6915

    Article  CAS  Google Scholar 

  25. Makhnach LV, Pankov VV, Strobel P (2008) High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates La2−xSrxNiO4−δ (x = 1 and 1.4). Mater Chem Phys 111:125–130

    Article  CAS  Google Scholar 

  26. Li X, Xin M, Guo S, Cai T, Du D, Xing W, Zhao L, Guo W, Xue Q, Yan Z (2017) Insight of synergistic effect of different active metal ions in layered double hydroxides on their electrochemical behaviors. Electrochim Acta 253:302–310

    Article  CAS  Google Scholar 

  27. Huang Z, Zhou W, Ouyang C, Wu J, Fei Z, Jingguo H, Gao Y, Chu J (2015) High performance of Mn-Co-Ni-O spinel nanofilms sputtered from acetate precursors. Sci Rep 5:10899

    Article  Google Scholar 

  28. Raju K, Nkosi FP, Viswanathan E, Mathe MK, Damodaran K, Ozoemena KI (2016) Microwave-enhanced electrochemical cycling performance of the Li(Ni0.2Mn1.8)O4 spinel cathode material at elevated temperature. Phys Chem Chem Phys 18:13074–13083

    Article  CAS  Google Scholar 

  29. van Roosmalen JAM, Cordfunke EHP, Huijsmans JPP (1993) Sinter behaviour of (La, Sr)MnO3. Solid State Ionics 66(3):285–293

    Article  Google Scholar 

  30. Miyake S, Fujihara S, Kimura T (2001) Characteristics of oriented LaNiO3 thin films fabricated by the sol–gel method. J Eur Ceram Soc 21:1525–1528

    Article  CAS  Google Scholar 

  31. Prabhakaran D, Isla P, Boothroyd AT (2002) Growth of large La2-xSrxNiO4+δ single crystals by the floating-zone technique. J Cryst Growth 237–239:815–819

    Article  Google Scholar 

  32. Manukyan KV, Avetisyan AG, Shuck CE, Chatilyan HA, Rouvimov S, Kharatyan SL, Mukasyan AS (2015) Nickel oxide reduction by hydrogen: kinetics and structural transformations. J Phys Chem C 119:16131–16138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program to solve climate changes through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2016M1A2A2940138)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Wang, A., Park, JS. et al. (La0.8Sr0.2)MnO3-Ni composite for the interconnect of solid oxide cells: effect of starting Ni particle size on sintering and electrical properties. J Mater Sci 56, 17721–17731 (2021). https://doi.org/10.1007/s10853-021-06400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06400-4