Skip to main content
Log in

Anisotropic bilayer hydrogels with synergistic photochromism behaviors for light-controlled actuators

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Smart hydrogels have attracted widespread attention and have displayed comprehensive applications in many fields. The development of a novel type of bilayer hydrogel with synergistic function of anisotropic deformation and photochromic property is extremely challenging. Many previous researches have focused on multiple response hydrogels. However, it hardly achieves the synergy of deformation and color-changing through a method with the advantages of simplicity, stability, practicality, and precise control. Herein, a near-infrared light (NIR) photothermal thermoresponsive graphene oxide/poly(N-isopropylacrylamide-β-cyclodextrin) (PNIPAM-β-CD/GO) hydrogel layer and a reversible photochromic ammonium molybdate tetrahydrate/poly(N-isopropylacrylamide-co-β-cyclodextrin) (PNIPAM-β-CD/Mo7) hydrogel layer were combined to obtain a bilayer hydrogel through the host–guest interactions between β-CD and the isopropyl group of NIPAM, exhibiting integrate anisotropic shape deformation and reversible photochromic behaviors. The designed actuators can undergo complex deformation owing to volume shrinkage caused by the photothermal effect under NIR of the PNIPAM-β-CD/GO layer, while the PNIPAM-β-CD/Mo7 hydrogel layer shows the characteristics of quickly color changing within 5 s when irradiated by a UV light source. The multiple responsiveness of hydrogels on temperature, NIR irradiation, and UV irradiation displays valuable advantages in multifunctional smart materials, such as intelligent soft robots.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

source irradiation in the horizontal direction. b Bending behavior triggered by NIR (808 nm) light source irradiation in the horizontal and vertical direction. c Bending angle of hydrogels. d Maximum angle change during the reversible bending process. e Photochromic and patterning behavior of bilayer hydrogels

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Lu T, Zhu SM, Chen ZX, Wang WL, Zhang W, Zhang D (2016) Hierarchical photonic structured stimuli-responsive materials as high-performance colorimetric sensors. Nanoscale 8:10316–10322

    Article  CAS  Google Scholar 

  2. Dong Y, Bazrafshan A, Pokutta A, Sulejmani F, Sun W, Combs JD, Clarke KC, Salaita K (2019) Chameleon-inspired strain-accommodating smart skin. ACS Nano 13:9918–9926

    Article  CAS  Google Scholar 

  3. Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6:6368

    Article  CAS  Google Scholar 

  4. Liu MJ, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T (2015) An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517:68–72

    Article  CAS  Google Scholar 

  5. Xue B, Qin M, Wang TK, Wu JH, Luo DJ, Jiang Q, Li Y, Cao Y, Wang W (2016) Electrically controllable actuators based on supramolecular peptide hydrogels. Adv Funct Mater 26:9053–9062

    Article  CAS  Google Scholar 

  6. de Haan LT, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP (2014) Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc 136:10585–10588

    Article  CAS  Google Scholar 

  7. Kawakami R, Matsuda T, Namba R, Nakajima T, Gong JP (2019) Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363:504–508

    Article  CAS  Google Scholar 

  8. Yao C, Liu Z, Yang C, Wang W, Ju XJ, Xie R, Chu LY (2016) Smart hydrogels with inhomogeneous structures assembled using nanoclay-cross-linked hydrogel subunits as building blocks. ACS Appl Mater Interf 8:21721–21730

    Article  CAS  Google Scholar 

  9. Mredha MTI, Le HH, Tran VT, Trtik P, Cui J, Jeon I (2019) Anisotropic tough multilayer hydrogels with programmable orientation. Mater Horiz 6:1504–1511

    Article  CAS  Google Scholar 

  10. Ma CX, Le XX, Tang XL, He J, Xiao P, Zheng J, Xiao H, Lu W, Zhang JW, Huang YJ, Chen T (2016) A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv Funct Mater 26:8670–8676

    Article  CAS  Google Scholar 

  11. Wang ZJ, Li CY, Zhao XY, Wu ZL, Zheng Q (2019) Thermo- and photo-responsive composite hydrogels with programmed deformations. J Mater Chem B 7:1674–1678

    Article  CAS  Google Scholar 

  12. Wang JR, Wang JF, Chen Z, Fang SL, Zhu Y, Baughman RH, Jiang L (2017) Tunable, fast, robust hydrogel actuators based on evaporation-programmed heterogeneous structures. Chem Mater 29:9793–9801

    Article  CAS  Google Scholar 

  13. Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25:6581–6588

    Article  CAS  Google Scholar 

  14. Cheng Y, Chan KH, Wang XQ, Ding T, Li T, Lu X, Ho GW (2019) Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano 13:13176–13184

    Article  CAS  Google Scholar 

  15. Zheng WJ, An N, Yang JH, Zhou J, Chen YM (2015) Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interf 7:1758–1764

    Article  CAS  Google Scholar 

  16. Hayashi K, Okamoto F, Hoshi S, Katashima T, Zujur DC, Li X, Shibayama M, Gilbert EP, Chung U-i, Ohba S, Oshika T, Sakai T (2017) Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng 1:0044

    Article  CAS  Google Scholar 

  17. Kaneko D, Gong JP, Osada Y (2002) Polymer gels as soft and wet chemomechanical systems—an approach to artificial muscles. J Mater Chem 12:2169–2177

    Article  CAS  Google Scholar 

  18. Zhao Q, Liang YH, Ren L, Yu ZL, Zhang ZH, Ren LQ (2018) Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 51:621–631

    Article  CAS  Google Scholar 

  19. Zhang EZ, Wang T, Hong WX, Sun W, Liu XX, Tong Z (2014) Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels. J Mater Chem A 2:15633

    Article  CAS  Google Scholar 

  20. Alexander S, Tom K, Ashley T, Peter F, Joanna A (2007) Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315:487–490

    Article  Google Scholar 

  21. Zhu CH, Lu Y, Peng J, Chen JF, Yu SH (2012) Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv Funct Mater 22:4017–4022

    Article  CAS  Google Scholar 

  22. Lin HS, Tan JW, Zhu JL, Lin SY, Zhao YC, Yu WZ, Hojaiji H, Wang B, Yang S, Cheng X, Wang Z, Tang E, Yeung C, Emaminejad S (2020) A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nat Commun 11:4405

    Article  CAS  Google Scholar 

  23. Wang L, Jian YK, Le XX, Lu W, Ma CX, Zhang JW, Huang YJ, Huang CF, Chen T (2018) Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function. Chem Commun 54:1229–1232

    Article  CAS  Google Scholar 

  24. Han ZL, Wang P, Mao GY, Yin TH, Zhong DM, Yiming B, Hu XC, Jia Z, Nian GD, Qu SX, Yang W (2020) Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interf 12:12010–12017

    Article  CAS  Google Scholar 

  25. Yao C, Liu Z, Yang C, Wang W, Ju XJ, Xie R, Chu LY (2015) Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators. Adv Funct Mater 25:2980–2991

    Article  CAS  Google Scholar 

  26. Li X, Cai XB, Gao YF, Serpe MJ (2017) Reversible bidirectional bending of hydrogel-based bilayer actuators. J Mater Chem B 5:2804–2812

    Article  CAS  Google Scholar 

  27. Le XX, Lu W, Zhang JW, Chen T (2019) Recent progress in biomimetic anisotropic hydrogel actuators. Adv Sci 6:1801584

    Article  CAS  Google Scholar 

  28. Xiao SW, Zhang MZ, He XM, Huang L, Zhang YX, Ren BQ, Zhong MQ, Chang Y, Yang JT, Zheng J (2018) Dual salt- and thermoresponsive programmable bilayer hydrogel actuators with pseudo-interpenetrating double-network structures. ACS Appl Mater Interf 10:21642–21653

    Article  CAS  Google Scholar 

  29. Zheng J, Xiao P, Le XX, Lu W, Théato P, Ma CX, Du BY, Zhang JW, Huang YJ, Chen T (2018) Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J Mater Chem C 6:1320–1327

    Article  CAS  Google Scholar 

  30. Zhang ZH, Chen ZY, Wang Y, Chi JJ, Wang YT, Zhao YJ (2019) Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability. Small Methods 3:1900519

    Article  CAS  Google Scholar 

  31. Jiao C, Zhang JN, Liu TQ, Peng X, Wang HL (2020) Mechanically strong, tough, and shape deformable poly(acrylamide-co-vinylimidazole) hydrogels based on Cu(2+) complexation. ACS Appl Mater Interf 12:44205–44214

    Article  CAS  Google Scholar 

  32. Li Z, Liu PC, Ji XF, Gong JY, Hu YB, Wu WJ, Wang XN, Peng HQ, Kwok RTK, Lam JWY, Lu J, Tang BZ (2020) Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv Mater 32:e1906493

    Article  CAS  Google Scholar 

  33. Li L, Scheiger JM, Levkin PA (2019) Design and applications of photoresponsive hydrogels. Adv Mater 31:e1807333

    Article  CAS  Google Scholar 

  34. Kundu PK, Samanta D, Leizrowice R, Margulis B, Zhao H, Borner M, Udayabhaskararao T, Manna D, Klajn R (2015) Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat Chem 7:646–652

    Article  CAS  Google Scholar 

  35. Wang WS, Liu LT, Feng J, Yin YD (2018) Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2:1700273

    Article  CAS  Google Scholar 

  36. Han D, Jiang BL, Feng J, Yin YD, Wang WS (2017) Photocatalytic self-doped SnO2-x nanocrystals drive visible-light-responsive color switching. Angew Chem Int Ed Engl 56:7792–7796

    Article  CAS  Google Scholar 

  37. Yang YQ, Guan L, Jiang HC, Duan LJ, Gao GH (2018) A rapidly responsive photochromic hydrogel with high mechanical strength for ink-free printing. J Mater Chem C 6:7619–7625

    Article  CAS  Google Scholar 

  38. ter Schiphorst J, van den Broek M, de Koning T, Murphy JN, Schenning APHJ, Esteves ACC (2016) Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. J Mater Chem A 4:8676–8681

    Article  Google Scholar 

  39. Chen H, Yang FY, Chen Q, Zheng J (2017) A Novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv Mater 29:1606900

    Article  CAS  Google Scholar 

  40. Han WW, Liu ZL, Wang SC, Ji Y, Zhang XL (2020) Construction of a novel photoresponsive supramolecular fluorescent hydrogel through host–guest interaction between β-cyclodextrin and azobenzene. Chem Sel 5:2300–2305

    CAS  Google Scholar 

  41. Kathan M, Kovaricek P, Jurissek C, Senf A, Dallmann A, Thunemann AF, Hecht S (2016) Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew Chem Int Ed Engl 55:13882–13886

    Article  CAS  Google Scholar 

  42. Kang MM, Deng YY, Oderinde O, Su FF, Ma WJ, Yao F, Fu GD, Zhang ZL (2019) Sunlight-driven photochromic hydrogel based on silver bromide with antibacterial property and non-cytotoxicity. Chem Eng J 375:121994

    Article  CAS  Google Scholar 

  43. Yang YQ, Guan L, Gao GH (2018) Low-cost, rapidly responsive, controllable, and reversible photochromic hydrogel for display and storage. ACS Appl Mater Interf 10:13975–13984

    Article  CAS  Google Scholar 

  44. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98:307–325

    Article  CAS  Google Scholar 

  45. Deng ZX, Guo Y, Zhao X, Ma PX, Guo BL (2018) Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem Mater 30:1729–1742

    Article  CAS  Google Scholar 

  46. Ding L, Li Y, Jia D, Deng JP, Yang WT (2011) β-cyclodextrin-based oil-absorbents: preparation, high oil absorbency and reusability. Carbohydr Polym 83:1990–1996

    Article  CAS  Google Scholar 

  47. Gao QF, Hu J, Shi JM, Wu WW, Debeli DK, Pan PJ, Shan GR (2020) Fast photothermal poly(NIPAM-co-beta-cyclodextrin) supramolecular hydrogel with self-healing through host-guest interaction for intelligent light-controlled switches. Soft Matter 16:10558–10566

    Article  CAS  Google Scholar 

  48. Ma CX, Lu W, Yang XX, He J, Le XX, Wang L, Zhang JW, Serpe MJ, Huang Y, Chen T (2018) Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv Funct Mater 28:1704568

    Article  CAS  Google Scholar 

  49. Lee EM, Gwon SY, Ji BC, Wang S, Kim SH (2012) Multiple switching behaviors of poly(N-isopropylacrylamide) hydrogel with spironaphthoxazine and D-π-A type dye. J Lumin 132:665–670

    Article  CAS  Google Scholar 

  50. Wang S, Choi MS, Kim SH (2008) Multiple switching photochromic poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel. Dyes Pigm 78:8–14

    Article  CAS  Google Scholar 

  51. Yang XL, Zhou LH, Lv L, Zhao X, Hao LY (2016) Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. Colloid Polym Sci 294:1623–1632

    Article  CAS  Google Scholar 

  52. Stumpel JE, Liu D, Broer DJ, Schenning AP (2013) Photoswitchable hydrogel surface topographies by polymerisation-induced diffusion. Chem Eur J 19:10922–10927

    Article  CAS  Google Scholar 

  53. Janecek ER, McKee JR, Tan CS, Nykanen A, Kettunen M, Laine J, Ikkala O, Scherman OA (2015) Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew Chem Int Ed Engl 54:5383–5388

    Article  CAS  Google Scholar 

  54. Feng Q, Wei KC, Lin S, Xu Z, Sun YX, Shi P, Li G, Bian LM (2016) Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101:217–228

    Article  CAS  Google Scholar 

  55. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093

    Article  CAS  Google Scholar 

  56. Yang JL, Liu S, Xiao Y, Gao GR, Sun YN, Guo QZ, Wu JY, Fu J (2016) Multi-responsive nanocomposite hydrogels with high strength and toughness. J Mater Chem B 4:1733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guorong Shan or Miao Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2210 KB)

Supplementary file2 (MP4 10610 KB)

Supplementary file3 (MP4 5584 KB)

Supplementary file4 (MP4 18640 KB)

Supplementary file5 (MP4 8857 KB)

Supplementary file6 (MP4 5984 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Pan, P., Shan, G. et al. Anisotropic bilayer hydrogels with synergistic photochromism behaviors for light-controlled actuators. J Mater Sci 56, 16324–16338 (2021). https://doi.org/10.1007/s10853-021-06335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06335-w

Navigation