Skip to main content

Advertisement

Log in

Multilayered Ruddlesden–Popper perovskite hybrids with alternative organic spacers of 4-XC6H4C2H4NH2 (where X = H, Br, Cl) for solar cell applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) organic–inorganic perovskite hybrid materials with enhanced stability have attracted wide attention in optoelectronic field in recent years. Efforts of exploring new 2D perovskites with various organic or inorganic components have been devoted to further improve their solar cell efficiencies. In this work, three structurally similar spacer cations of phenylethylammonium (PEA), 4-bromophenylethylammonium (BPEA) and 4-chlorophenylethylammonium (CPEA) are selected to prepare multilayered 2D perovskites. It is found that the introduction of halogen atoms in the organic cations positively influences the film quality, light absorption, charge transport, device performance and moisture stability of the resulting perovskites. The (BPEA)2(MA)4Pb5I16 and (CPEA)2(MA)4Pb5I16 perovskites exhibit efficiencies of 7.38% and 10.88%, respectively, which are much higher than that of (PEA)2(MA)4Pb5I16 (3.98%). Owning to the larger size and bigger electronegativity of halogen atom in spacer cations, the PCE of unsealed BPEA- and CPEA-based 2D perovskite devices maintains 73% and 63% of their original efficiency after 720 h exposure to 60% humid air, while the PEA-based 2D device decreases to 52% of its initial PCE. Our work demonstrates new insight to modify the quality and stability of 2D perovskite hybrids, highlighting the validity of molecule design of organic cations in improving the efficiency and stability of 2D perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050

    Article  CAS  Google Scholar 

  2. National Renewable Energy Laboratory (NREL) (2021) https://www.nrel.gov/pv/cell-efficiency.html

  3. Song Z, Watthage SC, Phillips AB, Liyanage GK, Khanal RR, Tompkins BL, Ellingson RJ, Heben MJ (2015) Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping. In: Eldada LA, Heben MJ (eds) Thin films for solar and energy technology VII, vol 9561. p 956107

  4. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769

    Article  CAS  Google Scholar 

  5. Halder A, Chulliyil R, Subbiah AS, Khan T, Chattoraj S, Chowdhury A, Sarkar SK (2015) Pseudohalide (SCN-) doped MAPbI3 perovskites: a few surprises. J Phys Chem Lett 6(17):3483–3489

    Article  CAS  Google Scholar 

  6. Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2(3):705–710

    Article  CAS  Google Scholar 

  7. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q (2016) A polymer scaffold for self-healing perovskite solar cells. Nat Commun 7:10228

    Article  CAS  Google Scholar 

  8. Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett 6(3):432–437

    Article  CAS  Google Scholar 

  9. Yang S, Wang Y, Liu P, Cheng YB, Zhao HJ, Yang HG (2016) Functionalization of perovskite thin films with moisture-tolerant molecules. Nat Energy 1(7):15016

    Article  CAS  Google Scholar 

  10. Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L (2014) Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A 2(47):20105–20111

    Article  CAS  Google Scholar 

  11. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI (2014) A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed 53(42):11232–11235

    Article  CAS  Google Scholar 

  12. Li Y, Milic JV, Ummadisingu A, Seo JY, Im JH, Kim HS, Liu Y, Dar MI, Zakeeruddin SM, Wang P, Hagfeldt A, Grätzel M (2019) Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells. Nano Lett 19(1):150–157

    Article  CAS  Google Scholar 

  13. Stoumpos CC, Cao DH, Clark DJ, Young J, Rondinelli JM, Jang JI, Hupp JT, Kanatzidis MG (2016) Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductor. Chem Mater 28(8):2852–2867

    Article  CAS  Google Scholar 

  14. Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski MR, Stoumpos CC, Kanatzidis MG (2018) Hybrid Dion-Jacobson 2D lead iodide perovskites. J Am Chem Soc 140(10):3775–3783

    Article  CAS  Google Scholar 

  15. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD (2016) High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536(7616):312–317

    Article  CAS  Google Scholar 

  16. Fu W, Wang J, Zuo L, Gao K, Liu F, Ginger DS, Jen AKY (2018) Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. Acs Energy Lett 3(9):2086–2093

    Article  CAS  Google Scholar 

  17. Wu G, Li X, Zhou J, Zhang J, Zhang X, Leng X, Wang P, Chen M, Zhang D, Zhao K, Liu S, Zhou H, Zhang Y (2019) Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv Mater 31(42):1903889

    Article  CAS  Google Scholar 

  18. Chen Y, Sun Y, Peng J, Zhang W, Su X, Zheng K, Pullerits T, Liang Z (2017) Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv Energy Mater 7(18):1700162

    Article  Google Scholar 

  19. Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies DM, Mueller C, Zhao K, Liu SF (2018) Highly efficient Ruddlesden–Popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett 3(8):1975–1982

    Article  CAS  Google Scholar 

  20. Li Z, Liu N, Meng K, Liu Z, Hu Y, Xu Q, Wang X, Li S, Cheng L, Chen G (2019) A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells. Nano Lett 19(8):5237–5245

    Article  CAS  Google Scholar 

  21. Xu Z, Lu D, Liu F, Lai H, Wan X, Zhang X, Liu Y, Chen Y (2020) Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Nano 14(4):4871–4881

    Article  CAS  Google Scholar 

  22. Xi J, Spanopoulos I, Bang K, Xu J, Dong H, Yang Y, Malliakas CD, Hoffman JM, Kanatzidis MG, Wu Z (2020) Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases. J Am Chem Soc 142(46):19705–19714

    Article  CAS  Google Scholar 

  23. He T, Li S, Jiang Y, Qin C, Cui M, Qiao L, Xu H, Yang J, Long R, Wang H, Yuan M (2020) Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat Commun 11(1):1672

    Article  CAS  Google Scholar 

  24. Liang C, Gu H, Xia Y, Wang Z, Liu X, Xia J, Zuo S, Hu Y, Gao X, Hui W, Chao L, Niu T, Fang M, Lu H, Dong H, Yu H, Chen S, Ran X, Song L, Li B, Zhang J, Peng Y, Shao G, Wang J, Chen Y, Xing G, Huang W (2020) Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat Energy. https://doi.org/10.1038/s41560-020-00721-5

    Article  Google Scholar 

  25. Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S, Zhao K (2019) Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv Mater 31(44):1903848

    Article  CAS  Google Scholar 

  26. Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W (2020) Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat Photonics 14(3):154

    Article  CAS  Google Scholar 

  27. Fu W, Liu H, Shi X, Zuo D, Li X, Jen LKY (2019) Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells. Adv Funct Mater 29(25):1900221

    Article  Google Scholar 

  28. Jiménez-López J, Cambarau W, Cabau L, Palomares E (2017) Charge injection, carriers recombination and homo energy level relationship in perovskite solar cells. Sci Rep 7(1):6101

    Article  Google Scholar 

  29. Sussman A (1967) Space charge limited currents in copper phthalocyanine thin films. J Appl Phys 38(7):2738–2748

    Article  CAS  Google Scholar 

  30. Tan H, Jain A, Voznyy O, Lan X, de Arquer FPG, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326):722–726

    Article  CAS  Google Scholar 

  31. Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S (2018) The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv Energy Mater 8(21):1500051

    Article  Google Scholar 

  32. Wang F, Geng W, Zhou Y, Fang H-H, Tong C-J, Loi MA, Liu L-M, Zhao N (2016) Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv Mater 28(45):9986–9992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51772228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liling Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, X., Zhao, W., Xu, T. et al. Multilayered Ruddlesden–Popper perovskite hybrids with alternative organic spacers of 4-XC6H4C2H4NH2 (where X = H, Br, Cl) for solar cell applications. J Mater Sci 56, 17167–17177 (2021). https://doi.org/10.1007/s10853-021-06330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06330-1

Navigation