Skip to main content
Log in

Control of copper nanoparticle metallization on electrospun fibers via Pd and Ag seed-assisted templating

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the effects of palladium and silver seed chemistries on the electroless deposition of copper nanoparticles on electrospun polyacrylonitrile (PAN) fibers to identify conditions that enable formation of either conformal coatings or isolated metallic nanoparticles. The kinetics of Cu deposition was enhanced on Pd seeded fibers over Ag seeding, and continuous growth of copper nanoparticles conformal to the PAN fibers was achieved in instances with high seed density for both seed chemistries. A discrete distribution of copper nanoparticles was observed for low density silver seeding. Furthermore, the high density Ag seeds promoted dense and compact copper nanoparticle films, while the films on the Pd seeded fibers were rough with inclusions of microporosity. Raman spectroscopy revealed that a higher ratio of the D to G bands formed during processing, indicative of more cyclization of nitrile groups in surface PAN molecules during the seeding and deposition processes, corresponds to a higher seeding density. Thermal stability of PAN is enhanced with isolated Pd seeds present where the seed size is lower than the mean free path for electron conduction, but degrades as larger seeds or more dense and compact metallic shells are formed on the fibers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sarkar S, Guibal E, Quignard F, SenGupta A (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Interdiscip Forum Nanoscale Sci Technol 14:1–24

    Google Scholar 

  2. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor (report). Biosens Bioelectron 24:676

    Article  CAS  Google Scholar 

  3. Dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir ACS J Surf Colloids 20:10273

    Article  CAS  Google Scholar 

  4. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  5. Marx S, Jose MV, Andersen JD, Russell AJ (2011) Electrospun gold nanofiber electrodes for biosensors. Biosens Bioelectron 26:2981–2986

    Article  CAS  Google Scholar 

  6. Li X, Wang M, Wang C, Cheng C, Wang X (2014) Facile immobilization of ag nanocluster on nanofibrous membrane for oil/water separation. ACS Appl Mater Interfaces 6:15272

    Article  CAS  Google Scholar 

  7. Liu Z, Yan Z, Jia L, Song P, Mei L, Bai L, Liu Y (2017) Gold nanoparticle decorated electrospun nanofibers: a 3D reproducible and sensitive SERS substrate. Appl Surf Sci 403:29–34

    Article  CAS  Google Scholar 

  8. Yadav R, Balasubramanian K (2015) Metallization of electrospun PAN nanofibers via electroless gold plating . RSC Adv 5:24990–24996

    Article  CAS  Google Scholar 

  9. Yu D-G, Zhou J, Chatterton NP, Li Y, Huang J, Wang X (2012) Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int J Nanomed 7:5725

    Article  CAS  Google Scholar 

  10. Gawande MB, Goswami A, Felpin FOX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  Google Scholar 

  11. Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390

    Article  CAS  Google Scholar 

  12. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 20:6627–6632

    Article  CAS  Google Scholar 

  13. He J, Zhao R, Zhang N, Lu X, Wang C (2018) Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater 10:749–760

    Article  CAS  Google Scholar 

  14. Mushibe EK, Andala D, Murphy SC, Raiti-Palazzolo K, Duffy-Matzner JL, Jones WE (2012) Electrically conducting polymers as templating interfaces for fabrication of copper nanotubes. Langmuir 28:6684–6690

    Article  CAS  Google Scholar 

  15. Barker BD (1981) Electroless deposition of metals. Surf Technol 12:77–88

    Article  Google Scholar 

  16. Testa A, Bernasconi R, Yoshikawa R, Takenaka I, Magagnin L, Shiratori S (2017) Transparent flexible electrodes based on junctionless copper nanowire network via selective electroless metallization of electrospun nanofibers. J Electrochem Soc 164:D764–D770

    Article  CAS  Google Scholar 

  17. Hsu P-C, Kong D, Wang S, Wang H, Welch AJ, Wu H, Cui Y (2014) Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc 136:10593

    Article  CAS  Google Scholar 

  18. Ji H, Zhao R, Li Y, Sun B, Li Y, Zhang N, Qiu J, Li X, Wang C (2018) Robust and durable superhydrophobic electrospun nanofibrous mats via a simple Cu nanocluster immobilization for oil-water contamination. Colloids Surf, A 538:173–183

    Article  CAS  Google Scholar 

  19. Yang X, Hu X, Wang Q, Xiong J, Yang H, Meng X, Tan L, Chen L, Chen Y (2017) Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template . ACS Appl Mater Interfaces 9:26468–26475

    Article  CAS  Google Scholar 

  20. Paunovic M (2006) Fundamentals of electrochemical deposition. Wiley, Hoboken

    Book  Google Scholar 

  21. Krulik GA (1982) Tin-palladium catalysts for electroless plating. Platin Met Rev 26:58–64

    CAS  Google Scholar 

  22. Lindsay J (2016) The characterization of the stannous chloride/ palladium chloride catalysts for electroless plating. Prod Finish 80:12

    Google Scholar 

  23. Aminu TQ, Bahr DF (2018) Probing adhesion of metallic nanoparticles on polymeric fibrous and flat architectures . MRS Adv 3:2749–2756

    Article  CAS  Google Scholar 

  24. Kim GH, Woo H, Kim S, An T, Lim G (2020) Highly-robust, solution-processed flexible transparent electrodes with a junction-free electrospun nanofiber network. RSC Adv 10:9940–9948

    Article  CAS  Google Scholar 

  25. Bakar SSS, Fong KC, Eleyas A, Nazeri MFM (2018) In: IOP Conference Series: Materials Science and Engineering, Vol 318. p 012076

  26. Godjevargova T, Simeonova A, Dimov A (2002) Adsorption of heavy metal ions from aqueous solutions by porous polyacrylonitrile beads. J Appl Polym Sci 83:3036–3044

    Article  CAS  Google Scholar 

  27. Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006

    Article  CAS  Google Scholar 

  28. Durmazel S, Üzer AE, Erbil B, Sayın B, Apak RA (2019) Silver nanoparticle formation-based colorimetric determination of reducing sugars in food extracts via Tollens’ reagent. ACS Omega 4:7596–7604

    Article  CAS  Google Scholar 

  29. Paglieri SN, Foo KY, Way JD, Collins JP, Harper-Nixon DL (1999) A new preparation technique for Pd/Alumina membranes with enhanced high-temperature stability . Ind Eng Chem Res 38:1925–1936

    Article  CAS  Google Scholar 

  30. Schlesinger M, Paunovic M (2000) Modern electroplating. Wiley, New York

    Google Scholar 

  31. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  32. Reneker DH (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4548

    Article  CAS  Google Scholar 

  33. Wei X, Roper DK (2014) Tin sensitization for electroless plating review. J Electrochem Soc 161:D235–D242

    Article  CAS  Google Scholar 

  34. Krulik GA (1980) Hydrous melt catalyst synthesis. J Catal 65:95–104

    Article  CAS  Google Scholar 

  35. Koo HC, Kim SY, Cho SK, Kim JJ (2008) Ag seed-layer formation by electroless plating for ultra-large-scale integration interconnection. J Electrochem Soc 155:D558–D562

    Article  CAS  Google Scholar 

  36. Zhao M, Yu L, Akolkar R, Anderson AB (2016) Mechanism of electroless copper deposition from [Cu II EDTA] 2-complexes using aldehyde-based reductants. J Phys Chem C 120:24789–24793

    Article  CAS  Google Scholar 

  37. Baetzold RC (1983) Interaction of saturated hydrocarbons with transition-metal films: molecular orbital calculations. J Am Chem Soc 105:4271–4276

    Article  CAS  Google Scholar 

  38. Sung Y-C, Lai C-H, Lin S-J, Chang S-Y (2006) Early-stage nucleation crystallography of sensitization-activated palladium catalysts and electrolessly deposited copper films. Electrochem Solid-State Lett 9:C85–C87

    Article  CAS  Google Scholar 

  39. Chang S-Y, Hsu C-J, Fang R-H, Lin S-J (2003) Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization. J Electrochem Soc 150:C603

    Article  CAS  Google Scholar 

  40. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the Exchange Current for Hydrogen Evolution. J Electrochem Soc 152:J23

    Article  CAS  Google Scholar 

  41. Grouchko M, Kamyshny A, Ben-Ami K, Magdassi S (2009) Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles . Interdiscip Forum Nanoscale Sci Technol 11:713–716

    CAS  Google Scholar 

  42. Li J, Su S, Zhou L, Kundrát V, Abbot AM, Mushtaq F, Ouyang D, James D, Roberts D, Ye H (2013) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J Appl Phys 113:024313

    Article  CAS  Google Scholar 

  43. Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 59:2267–2276

    Article  CAS  Google Scholar 

  44. Muniz-Miranda M, Gellini C, Giorgetti E (2011) Surface-enhanced raman scattering from copper nanoparticles obtained by laser ablation. J Phys Chem C 115:5021–5027

    Article  CAS  Google Scholar 

  45. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5:5–9

    Article  CAS  Google Scholar 

  46. do Amaral Junior MA, Matsushima JT, Rezende MC, Gonçalves ES, Marcuzzo JS, Baldan MR (2017) Production and characterization of activated carbon fiber from textile PAN Fiber. J Aerosp Technol Manag 9:423–430

    Article  CAS  Google Scholar 

  47. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B: Condens Matter 64:075414

    Article  CAS  Google Scholar 

  48. Litmanovich AD, Platé NA (2000) Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Macromol Chem Phys 201:2176–2180

    Article  CAS  Google Scholar 

  49. Wang D, Yue Y, Wang Q, Cheng W, Han G (2020) Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Appl Surf Sci 510:145462

    Article  CAS  Google Scholar 

  50. Grassie N, McGuchan R (1970) Pyrolysis of polyacrylonitrile and related polymers—I. Thermal analysis of polyacrylonitrile. Eur Polym J 6:1277–1291

    Article  CAS  Google Scholar 

  51. Şahiner N, Pekel N, Güven O (1999) Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. React Funct Polym 39:139–146

    Article  Google Scholar 

  52. Ren S, Dong L, Zhang X, Lei T, Ehrenhauser F, Song K, Li M, Sun X, Wu Q (2017) Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced raman scattering. Materials (Basel) 10:68

    Article  CAS  Google Scholar 

  53. Onwudiwe DC, Strydom CA, Vala RMK, Tichagwa L (2015) Preparation and structural properties of electrospun PAN nanofibers reinforced with ZnS nanoparticles. Synth React Inorg Metal Organic Nano-Met Chem 45:1251–1259

    Article  CAS  Google Scholar 

  54. Warrier P, Teja A (2011) Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett 6:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation under grant CMMI 1634772. The Authors will also like to thank Robert Seiler and Shuvo Shoumya of the Life Science Microscopy facility at Purdue University for assistance with T.E.M sample preparation and imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Bahr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2599 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminu, T.Q., Bahr, D.F. Control of copper nanoparticle metallization on electrospun fibers via Pd and Ag seed-assisted templating. J Mater Sci 56, 16307–16323 (2021). https://doi.org/10.1007/s10853-021-06326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06326-x

Navigation