Skip to main content

Advertisement

Log in

Adsorption of nitrogen-based gases on different layers of blue phosphorene oxides

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Some nitrogen-based gases (NO, \({\text {NO}}_{2}\), \({\text {NH}}_{3}\) and \({\text {N}}_{2}\)O) generate from the burning of fossil fuels and biomass, as well as from agricultural-related processes. They are directly related to both the deterioration of environment and human health. Research on two-dimensional materials as cores for sensing these types of harmful gases has attracted great interest; motivated by the fact that the interaction with those gases produces changes in their structural, electronic, magnetic and optical properties. In this work, investigation on the adsorption of those gases onto different blue phosphorene oxide species was carried out with the use of density functional theory, including Van der Waals interaction through KBM exchange-correlation functional. In the calculation, different positions and modes of molecule adsorption on the oxides were taken into account. The results obtained show that the interaction varies with both the nature of the molecule chemical composition and the oxide structure, resulting in different values of charge transfer, and leading to greater or lesser values of the adsorption energy of the gases. In some cases, spin polarization was observed, producing noticeable changes in the electronic structure and the optical spectrum of the nanosurfaces for each of the systems. The gases that produce the greatest change are \({\text {NH}}_3\) and NO, while those with the lowest optoelectronic responses on the different oxides are \({\text {N}}_2\)O and \({\text {N}}_2\). The changes observed in the electronic structure as well as the short recovery time of gases would confirm the possibility of using these oxides for sensing applications, as it has been verified for other 2D nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Mendoza-Villafuerte P, Suarez-Bertoa R, Giechaskiel B, Riccobono F, Bulgheroni C, Astorga C, Perujo A (2017) Nox, nh3, n2o and pn real driving emissions from a euro vi heavy-duty vehicle. impact of regulatory on-road test conditions on emissions. Sci Total Environ 609:546–555

    Article  CAS  Google Scholar 

  2. Olivier JGJ, Bouwman AF, Van der Hoek KW, Berdowski JJM (1998) Global air emission inventories for anthropogenic sources of nox, nh3 and n2o in 1990. Environ Pollut 102(1):135–148

    Article  CAS  Google Scholar 

  3. Reis S, Pinder RW, Zhang M, Lijie G, Sutton MA (2009) Reactive nitrogen in atmospheric emission inventories. Atmos Chem Phys 9(19):7657–7677

  4. Aneja Viney P, Schlesinger William H, Li Qi, Nahas A, Battye William H (2020) Characterization of the global sources of atmospheric ammonia from agricultural soils. J Geophys Res Atmos 125(3):e2019JD031684

  5. Cowan N, Carnell E, Skiba U, Dragosits U, Drewer J, Levy P (2020) Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: a bayesian analysis of 20 years of experimental data. Environ Int 135:105366

    Article  CAS  Google Scholar 

  6. Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, Münzel T (2019) Cardiovascular disease burden from ambient air pollution in europe reassessed using novel hazard ratio functions. Eur Heart J 40(20):1590–1596

    Article  CAS  Google Scholar 

  7. Zhu H, Wu C, Wang J, Zhang X (2018) The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. Environ Sci Pollut Res 25(18):17499–17508

  8. Gholami F, Tomas M, Gholami Z, Vakili M (2020) Technologies for the nitrogen oxides reduction from flue gas: a review. Sci Total Environ 714:136712

  9. Goldstein A, Turner Will R, Spawn Seth A, Anderson-Teixeira Kristina J, Cook-Patton S, Fargione J, Gibbs Holly K, Griscom B, Hewson Jennifer H, Howard Jennifer F et al (2020) Protecting irrecoverable carbon in earth’s ecosystems. Nat Clim Change 10(4):287–295

  10. Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) Nox sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuat Chem 171:25–42

    Article  CAS  Google Scholar 

  11. Iqbal N, Afzal A, Cioffi N, Sabbatini L, Torsi L (2013) Nox sensing one-and two-dimensional carbon nanostructures and nanohybrids: progress and perspectives. Sens Actuat B Chem 181:9–21

    Article  CAS  Google Scholar 

  12. Liu Z, Feng Yu, Ma C, Dan J, Luo J, Dai B (2019) A critical review of recent progress and perspective in practical denitration application. Catalysts 9(9):771

    Article  CAS  Google Scholar 

  13. Fergus Jeffrey W (2007) Materials for high temperature electrochemical nox gas sensors. Sens Actuat B Chem 121(2):652–663

    Article  CAS  Google Scholar 

  14. Liu H, Wan J, Qiuyun F, Li M, Luo W, Zheng Z, Cao H, Yunxiang H, Zhou D (2013) Tin oxide films for nitrogen dioxide gas detection at low temperatures. Sens Actuat B Chem 177:460–466

    Article  CAS  Google Scholar 

  15. Singhal Akshay V, Hemant C, Indranil L (2017) Noble metal decorated graphene-based gas sensors and their fabrication: a review. Crit Rev Solid State Mater Sci 42(6):499–526

    Article  CAS  Google Scholar 

  16. Fine George F, Cavanagh Leon M, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6):5469–5502

  17. Binions R, Naik AJT (2013) Metal oxide semiconductor gas sensors in environmental monitoring. In: Semiconductor gas sensors. Elsevier, pp 433–466

  18. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106

    Article  CAS  Google Scholar 

  19. Yu Sevastyanov E, Maksimova NK, Novikov VA, Rudov FV, Sergeychenko NV, Chernikov EV (2012) Effect of pt, pd, au additives on the surface and in the bulk of tin dioxide thin films on the electrical and gas-sensitive properties. Semiconductors 46(6):801–809

    Article  CAS  Google Scholar 

  20. Kay HA, Seung YJ, Ha RH, Young HL (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater 16(12):1005–1009

    Article  CAS  Google Scholar 

  21. Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens Actuat B Chem 244:182–210

    Article  CAS  Google Scholar 

  22. Ahlers S, Müller G, Doll T (2006) Factors influencing the gas sensitivity of metal oxide materials. Encyclop Sens 3:413–447

    CAS  Google Scholar 

  23. Palmisano V, Weidner E, Boon-Brett L, Bonato C, Harskamp F, Moretto P, Post Matthew B, Burgess R, Rivkin C, Buttner William J (2015) Selectivity and resistance to poisons of commercial hydrogen sensors. Int J Hydrog Energy 40(35):11740–11747

  24. Choi S-J, Kim I-D (2018) Recent developments in 2d nanomaterials for chemiresistive-type gas sensors. Electron Mater Lett 14(3):221–260

    Article  CAS  Google Scholar 

  25. Donarelli M, Ottaviano L (2018) 2d materials for gas sensing applications: A review on graphene oxide, mos2, ws2 and phosphorene. Sensors 18(11):3638

    Article  CAS  Google Scholar 

  26. Padmanathan KK, Late Dattatray J, Morgan H, Chandra SR (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 32(7):13293–13312

    Google Scholar 

  27. Yang W, Gan L, Li H, Zhai T (2016) Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic Chem Front 3(4):433–451

    Article  CAS  Google Scholar 

  28. Yang S, Jiang C, Wei S (2017) Gas sensing in 2d materials. Appl Phys Rev 4(2):021304

    Article  CAS  Google Scholar 

  29. Liu N, Zhou S (2017) Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology 28(17):175708

    Article  CAS  Google Scholar 

  30. Safari F, Moradinasab M, Fathipour M, Kosina H (2019) Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study. Appl Surf Sci 464:153–161

  31. Thanh TT, Viet CN, Nguyen VD, Nguyen VH, Julker NM, Coghlan Campbell J, Tran Diana NH, Dusan L (2019) The particle size effects Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing. J Colloid Interf Sci 539:315–325

    Article  CAS  Google Scholar 

  32. Ratinac Kyle R, Yang W, Ringer Simon P, Braet F (2010) Toward ubiquitous environmental gas sensors capitalizing on the promise of graphene. Environ Sci Technol 44(4):1167–1176

    Article  CAS  Google Scholar 

  33. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652

    Article  CAS  Google Scholar 

  34. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091

    Article  CAS  Google Scholar 

  35. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18):185504

    Article  CAS  Google Scholar 

  36. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira Osvaldo N, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2d transition metal dichalcogenides. Microchimica Acta 185(4):213

    Article  CAS  Google Scholar 

  37. Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K (2015) Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett 15(5):2852–2862

    Article  CAS  Google Scholar 

  38. Meshginqalam B, Barvestani J (2019) Highly sensitive toxic gas molecule sensor based on defect-induced silicene. J Mater Sci Mater Electron 30(20):18637–18646

    Article  CAS  Google Scholar 

  39. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

  40. Jijun Z, Hongsheng L, Zhiming Yu, Ruge Q, Si Z, Yangyang W, Liu CC, Hongxia Z, Nannan H, Jing L et al (2016) Rise of silicene: a competitive 2d material. Prog Mater Sci 83:24–151

    Article  CAS  Google Scholar 

  41. Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S (2018) A revival of 2d materials, phosphorene: its application as sensors. J Indus Eng Chem 64:60–69

  42. Zhang Q, Zhang J, Wan S, Wang W, Lei F (2018) Stimuli-responsive 2d materials beyond graphene. Adv Funct Mater 28(45):1802500

    Article  CAS  Google Scholar 

  43. Morgan H, Rout Chandra S, Late Dattatray J (2019) Future prospects of 2d materials for sensing applications. Fund Sensing Appl 2D Mater 481–482

  44. Lee E, Young SY, Kim D-J (2018) Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens 3(10):2045–2060

    Article  CAS  Google Scholar 

  45. Rajkumar K, Rajendra Kumar RT (2019) Gas sensors based on two-dimensional materials and its mechanisms. In: Fundamentals and sensing applications of 2D materials. Elsevier, pp 205–258

  46. Büyükköse S (2020) Highly selective and sensitive wo3 nanoflakes based ammonia sensor. Mater Sci Semicond Process 110:104969

    Article  CAS  Google Scholar 

  47. Wei H, Xia N, Xiaojun W, Li Z, Yang J (2014) Silicene as a highly sensitive molecule sensor for nh 3, no and no 2. Phys Chem Chem Phys 16(15):6957–6962

    Article  CAS  Google Scholar 

  48. Yong Y, Xiangying S, Zhou Q, Kuang Y, Li X (2017) The zn 12 o 12 cluster-assembled nanowires as a highly sensitive and selective gas sensor for no and no 2. Sci Rep 7(1):17505

    Article  CAS  Google Scholar 

  49. Chakraborty B (2019) Electronic structure and theoretical aspects on sensing application of 2d materials. In: Fundamentals and sensing applications of 2D materials. Elsevier, pp 145–203

  50. Prasongkit J, Shukla V, Grigoriev A, Ahuja R, Amornkitbamrung V (2019) Ultrahigh-sensitive gas sensors based on doped phosphorene: a first-principles investigation. Appl Surf Sci 497:143660

    Article  CAS  Google Scholar 

  51. Tan T, Jiang X, Wang C, Yao B, Zhang H (2020) 2d material optoelectronics for information functional device applications: status and challenges. Adv Sci 7(11):2000058

  52. Chen X, Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X, Zhang S, Ren T (2016) Electronic structure and optical properties of graphene/stanene heterobilayer. Phys Chem Chem Phys 18(24):16302–16309

    Article  CAS  Google Scholar 

  53. Kong L-J, Liu G-H, Zhang Y-J (2016) Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv 6(13):10919–10929

    Article  CAS  Google Scholar 

  54. Safari F, Moradinasab M, Fathipour M, Schwalke U (2019) The transport and optical sensing properties of blue phosphorene: A first-principles study. In: 2019 14th international conference on design technology of integrated systems in nanoscale Era (DTIS). IEEE, pp 1–4

  55. Shaoliang Yu, Xiaoqin W, Wang Y, Guo X, Tong L (2017) 2d materials for optical modulation: challenges and opportunities. Adv Mater 29(14):1606128

    Article  CAS  Google Scholar 

  56. Gibertini M, Koperski M, Morpurgo AF, Novoselov KS (2019) Magnetic 2d materials and heterostructures. Nat Nanotechnol 14(5):408–419

    Article  CAS  Google Scholar 

  57. Ding Y, Wang Y (2015) Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study. J Phys Chem C 119(19):10610–10622

    Article  CAS  Google Scholar 

  58. Liu X, Ma T, Pinna N, Zhang J (2017) Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater 27(37):1702168

    Article  CAS  Google Scholar 

  59. Ricciardella F, Lee K, Stelz T, Hartwig O, Prechtl M, McCrystall M, McEvoy N, Duesberg Georg S (2020) Calibration of nonstationary gas sensors based on two-dimensional materials. ACS Omega 5(11):5959–5963

  60. Jha Ravindra K, Sakhuja N, Bhat N (2019) 2d nano materials for cmos compatible gas sensors. In: 2019 34th Symposium on microelectronics technology and devices (SBMicro). IEEE, pp 1–3

  61. Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P (2018) Chemical sensing with 2d materials. Chem Soc Rev 47(13):4860–4908

    Article  CAS  Google Scholar 

  62. Cai Y, Ke Q, Zhang G, Zhang Y-W (2015) Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J Phys Chem C 119(6):3102–3110

    Article  CAS  Google Scholar 

  63. Kou L, Frauenheim T, Chen C (2014) Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. J Phys Chem Lett 5(15):2675–2681

    Article  CAS  Google Scholar 

  64. Zeng B, Long M, Dong Y, Xiao J, Zhang S, Yi Y, Gao Y (2019) Stress-sign-tunable poisson’s ratio in monolayer blue phosphorus oxide. J Phys Condens Matter 31(29):295702

  65. Bai R, Chen Z, Gou M, Zhang Y (2018) A first-principles study of group iv and vi atoms doped blue phosphorene. Solid State Commun 270:76–81

    Article  CAS  Google Scholar 

  66. Jia LZ, Zhao S, Telychko M, Shuo Sun X, Jie S, Anton LT, Qi D, Zhuang J, Zheng Y et al (2019) Reversible oxidation of blue phosphorus monolayer on au (111). Nano Lett 19(8):5340–5346

    Article  CAS  Google Scholar 

  67. Zuluaga-Hernandez EA, Florez E, Dorkis L, Mora-Ramos ME, Correa JD (2020) Small molecule gas adsorption onto blue phosphorene oxide layers. Appl Surf Sci 530:147039

  68. Soler José M, Artacho E, Gale Julian D, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The siesta method for ab initio order-n materials simulation. J Phys Condens Mat 14(11):2745

    Article  Google Scholar 

  69. Jiří K, David Bowler R, Angelos M (2009) Chemical accuracy for the van der waals density functional. J Phys Condens Matter 22(2):022201

    Google Scholar 

  70. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92: 246401

  71. Ospina DA, Duque CA, Correa JD, Eric SM (2016) Twisted bilayer blue phosphorene: a direct band gap semiconduct. Superlatt Microstruc 97:562–568

    Article  CAS  Google Scholar 

  72. Ospina DA, Duque CA, Mora-Ramos ME, Correa JD (2017) Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: a dft study. Comput Mater Sci 135:43–53

    Article  CAS  Google Scholar 

  73. Jiří K, Bowler David R, Angelos M (2011) Van der waals density functionals applied to solids. Phys Rev B 83(19):195131

    Article  CAS  Google Scholar 

  74. Carrasco J, Santra B, Klimeš J, Michaelides A (2011) To wet or not to wet? dispersion forces tip the balance for water ice on metals. Phys Rev Lett 106(2):026101

    Article  CAS  Google Scholar 

  75. Jia X, An W (2018) Adsorption of monocyclic aromatics on transition metal surfaces: insight into variation of binding strength from first-principles. J Phys Chem C 122(38):21897–21909

    Article  CAS  Google Scholar 

  76. Bader RFW (1994) Atoms in molecules: a quantum theory.  Oxford University Press

  77. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for bader charge allocation. J Comput Chem 28(5):899–908

    Article  CAS  Google Scholar 

  78. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  79. Zuluaga-Hernández Edison A, Flórez E, Dorkis L, Mora-Ramos Miguel E, Correa Julian D (2020) Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies. Int J Quant Chem 120(2):e26075

    Google Scholar 

  80. Premasiri K, Gao Xuan PA (2019) Tuning spin-orbit coupling in 2d materials for spintronics: a topical review. J Phys Condens Matter 31(19):193001

    Article  CAS  Google Scholar 

  81. Garg P, Choudhuri I, Pathak B (2017) Stanene based gas sensors: effect of spin-orbit coupling. Phys Chem Chem Phys 19(46):31325–31334

    Article  CAS  Google Scholar 

  82. Le M-Q (2018) Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes. Nanotechnology 29(19):195701

    Article  CAS  Google Scholar 

  83. Gray P, Yoffe AD (1955) The reactivity and structure of nitrogen dioxide. Chem Rev 55(6):1069–1154

    Article  CAS  Google Scholar 

  84. Wells Alexander F (1978) Química inorgánica estructural. Reverte

  85. Shang Z, Abdalla M, Kuhnert M, Albanito F, Zhou F, Xia L, Smith P (2020) Measurement of n2o emissions over the whole year is necessary for estimating reliable emission factors. Environ Pollut 259:113864

    Article  CAS  Google Scholar 

  86. Tang S, Cao Z (2012) Adsorption and dissociation of ammonia on graphene oxides: a first-principles study. J Phys Chem C 116(15):8778–8791

    Article  CAS  Google Scholar 

  87. Mattson Eric C, Pande K, Unger M, Cui Shumao L, Ganhua Gajdardziska-Josifovska M, Weinert M, Chen J, Hirschmugl Carol J (2013) Exploring adsorption and reactivity of nh3 on reduced graphene oxide. J Phys Chem C 117(20):10698–10707

    Article  CAS  Google Scholar 

  88. Zhu S, Sun H, Liu X, Zhuang J, Zhao L (2017) Room-temperature nh 3 sensing of graphene oxide film and its enhanced response on the laser-textured silicon. Sci Rep 7(1):1–8

    Article  CAS  Google Scholar 

  89. Khurshid F, Jeyavelan M, Hussain T, Sterlin Leo Hudson M, Nagarajan S (2020) Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions. Mater Chem Phys 242:122485

    Article  CAS  Google Scholar 

  90. Sangiovanni DG, Edström D, Hultman L, Petrov I, Greene Joseph E, Chirita V (2014) Ab initio and classical molecular dynamics simulations of n2 desorption from tin (001) surfaces. Surf Sci 624:25–31

    Article  CAS  Google Scholar 

  91. Morino I, Yamada KMT, Maki AG (1999) Terahertz measurements of rotational transitions in vibrationally excited states of n2o. J Mole Spectros 196(1):131–138

    Article  CAS  Google Scholar 

  92. Xiao-Hong L, Shan-Shan L, Yong-Liang Y, Rui-Zhou Z (2020) Adsorption of nh3 onto vacancy-defected ti2co2 monolayer by first-principles calculations. Appl Surf Sci 504:144325

    Article  CAS  Google Scholar 

  93. Yong Y, Zhou Q, Su X, Kuang Y, Richard C, Catlow A, Li X (2019) Hydrogenated si12au20 cluster as a molecular sensor with high performance for nh3 and no detection: a first-principle study. J Mole Liquids 289:111153

    Article  CAS  Google Scholar 

  94. Sadegh MA, Monshi MM, Torres I, Zeidi SMJ, Calizo I (2018) Dft study of adsorption behavior of no, co, no2, and nh3 molecules on graphene-like bc3: a search for highly sensitive molecular sensor. Appl Surf Sci 427:326–333

    Article  CAS  Google Scholar 

  95. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of cnt no2 gas sensor. Chem Phys Lett 387(4–6):271–276

    Article  CAS  Google Scholar 

  96. Ghambarian M, Azizi Z, Ghashghaee M (2020) Phosphorene defect for high-quality detection of nitric oxide and carbon monoxide: a periodic density functional study. Chem Eng J 396:125247

  97. Liu X, Cui J, Sun J, Zhang X (2014) 3d graphene aerogel-supported sno 2 nanoparticles for efficient detection of no 2. RSC Adv 4(43):22601–22605

    Article  CAS  Google Scholar 

  98. Kaewmaraya T, Ngamwongwan L, Moontragoon P, Jarernboon W, Singh D, Ahuja R, Karto A, Hussain T (2021) Novel green phosphorene as a superior chemical gas sensing material. J Haz Mater 401: 123340

  99. Gonzalez Juan D, Shojaee K, Haynes Brian S, Montoya A (2018) The effect of surface coverage on n 2, no and n 2 o formation over pt (111). Phys Chem Chem Phys 20(39):25314–25323

    Article  Google Scholar 

Download references

Acknowledgements

Authors thanks MINCIENCIAS to financial support of this research by contract 120680864729. EAZH thanks MINCIENCIAS for the PhD scholarship. MEMR acknowledges Mexican Conacyt for partial support through Research Grant A1-S-8218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Correa.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2601 KB)

Supplementary material 2 (pdf 3866 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuluaga-Hernandez, E.A., Mora-Ramos, M.E., Flórez, E. et al. Adsorption of nitrogen-based gases on different layers of blue phosphorene oxides. J Mater Sci 56, 15824–15843 (2021). https://doi.org/10.1007/s10853-021-06300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06300-7

Navigation