Skip to main content
Log in

Facile fabrication and evaluation of self-healing Zn-Al layered double hydroxide superhydrophobic coating on aluminum alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The preparation of superhydrophobic coating on the surface of aluminum alloy can effectively improve its performance in the harsh environment. In this work, a superhydrophobic coating with water contact angle (WCA) up to 157.5 ± 0.5° and sliding angle less than 3° is prepared on aluminum alloy 6061 substrate by simple and environment-friendly hydrothermal reaction and stearic acid modification. The in situ growth coating is composed of Zn-Al layered double hydroxide and the morphology of the coating was a micro–nano composite structure with micro-sheet and nano-needle. The stearic acid is combined with the coating by physical adsorption and chemical bonding. The superhydrophobic coating imparts the properties of low adhesion, self-cleaning, and anti-corrosion to the aluminum alloy substrate, and it also has good high-temperature stability, acid and alkali resistance, mechanical stability and time durableness. The superhydrophobic coating can spontaneously recover 7 times after damaged by oxygen plasma etching. The outstanding comprehensive performance of the coating makes it a promising application for protection of aluminum alloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Caliies M, Quéré D (2005) On water repellency. Soft Matter 1:55–61. https://doi.org/10.1039/b501657f

    Article  CAS  Google Scholar 

  2. Gou X, Guo Z (2019) The superhydrophobic plant leaves: the variation in surface morphologies and wettability during the vegetation period. Langmuir 35:1047–1053. https://doi.org/10.1021/acs.langmuir.8b03996

    Article  CAS  Google Scholar 

  3. Wu C, Wu X, Zhao H, Xu B, Zhu L, Liu Y, Gao C (2020) Effect of sub-millimetre morphologies on the hydrophobicity of a copper surface prepared by WEDM. Surf Coat Tech 385:125455. https://doi.org/10.1016/j.surfcoat.2020.125455

    Article  CAS  Google Scholar 

  4. Nguyen SHT, Webb HK, Hasan J, Tobin MJ, Crawford RJ, Ivanova EP (2013) Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloid Surf B 106:126–134. https://doi.org/10.1016/j.colsurfb.2013.01.042

    Article  CAS  Google Scholar 

  5. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. https://doi.org/10.1007/s004250050096

    Article  CAS  Google Scholar 

  6. Ma L, Wang J, Zhang Z, Kang Y, Ma L (2021) Preparation of a superhydrophobic TiN/PTFE composite film toward self-cleaning and corrosion protection applications. J Mater Sci 56:1413–1425. https://doi.org/10.1007/s10853-020-05364-1

    Article  CAS  Google Scholar 

  7. Liu H, Yang L, Zhan Y, Lan J, Shang J, Zhou M, Lin S (2021) A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation. Cellulose 28:1715–1729. https://doi.org/10.1007/s10570-020-03585-w

    Article  CAS  Google Scholar 

  8. Zhang H, Yin L, Liu X, Weng R, Wang Y, Wu Z (2016) Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum. Appl Surf Sci 380:178–184. https://doi.org/10.1016/j.apsusc.2016.01.208

    Article  CAS  Google Scholar 

  9. Guo F, Duan S, Wu D, Matsuda K, Wang T, Zou Y (2021) Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion. Corros Sci 182:109262. https://doi.org/10.1016/j.corsci.2021.109262

    Article  CAS  Google Scholar 

  10. Li W, Zhang X, Yang J, Miao F (2013) In situ growth of superhydrophobic and icephobic films with micro/nanoscale hierarchical structures on the aluminum substrate. J Colloid Interf Sci 410:165–171. https://doi.org/10.1016/j.jcis.2013.07.063

    Article  CAS  Google Scholar 

  11. Shi Y, Zhang Z, Su J, Zhang J (2015) EIS study on 2024–T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry conditions. Mater Corros 56:701–706. https://doi.org/10.1002/maco.200503869

    Article  CAS  Google Scholar 

  12. Zhang B, Xu W, Zhu Q, Sun Y, Li Y (2019) Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection. Corros Sci 158:108083. https://doi.org/10.1016/j.corsci.2019.06.031

    Article  CAS  Google Scholar 

  13. Sebastian D, Yao CW, Lian I (2020) Multiscale corrosion analysis of superhydrophobic coating on 2024 aluminum alloy in a 3.5 wt% NaCl solution. MRS Commun 10:305–311. https://doi.org/10.1557/mrc.2020.24

    Article  CAS  Google Scholar 

  14. Zhang B, Xu W, Zhu Q, Hou B (2021) Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles. J Mater Sci Technol 66:74–81. https://doi.org/10.1016/j.jmst.2020.06.035

    Article  Google Scholar 

  15. Chen Z, Yan Z, Zhou H, Han F, Zhao L, Yan H (2021) One-step fabrication of the wear-resistant superhydrophobic structure on SiCp/Al composite surface by WEDM. Surf Coat Tech 409:126876. https://doi.org/10.1016/j.surfcoat.2021.126876

    Article  CAS  Google Scholar 

  16. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23:673–678. https://doi.org/10.1002/adma.201003129

    Article  CAS  Google Scholar 

  17. Yin X, Yu S, Zhao Y, Liu E, Wang K (2019) A self-healing Ni3S2 superhydrophobic coating with anti-condensation property. J Taiwan Inst Chem E 99:268–275. https://doi.org/10.1016/j.jtice.2019.03.014

    Article  CAS  Google Scholar 

  18. Wang X, Liu X, Zhou F, Liu W (2011) Self-healing superamphiphobicity. Chem Commun 47:2324–2326. https://doi.org/10.1039/c0cc04066e

    Article  CAS  Google Scholar 

  19. Abolghasemi MM, Yousefi V, Amirshaghaghi A (2015) Preparation and evaluation of a layered double hydroxide film on a nanoporous anodic aluminum oxide/aluminum wire as a highly thermal-resistant solid-phase microextraction fiber. New J Chem 39:3019–3115. https://doi.org/10.1039/c4nj01998a

    Article  Google Scholar 

  20. Li C, Gao L, Fan X, Zeng R, Zhi K (2020) In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31. Bioact Mater 5:364–376. https://doi.org/10.1016/j.bioactmat.2020.02.008

    Article  Google Scholar 

  21. Iqbal MA, Secchi M, Iqbal MA, Montagna M, Zanella C, Fedel M (2020) MgAl-LDH/graphene protective film: insight into LDH-graphene interaction. Surf Coat Tech 401:126253. https://doi.org/10.1016/j.surfcoat.2020.126253

    Article  CAS  Google Scholar 

  22. Zhou M, Pang X, Wei L, Gao K (2015) Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties. Appl Surf Sci 337:172–177. https://doi.org/10.1016/j.apsusc.2015.02.086

    Article  CAS  Google Scholar 

  23. Guo Y, Wang Q, Wang T (2011) Facile fabrication of superhydrophobic surface with micro/nanoscale binary structures on aluminum substrate. Appl Surf Sci 257:5831–5836. https://doi.org/10.1016/j.apsusc.2011.01.114

    Article  CAS  Google Scholar 

  24. George G, Saravanakumar MP (2018) Correction to: Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn-Al LDH: application on crystal violet and malachite green dye adsorption-isotherm, kinetics and Box-Behnken design. Environ Sci Pollut Res 25:30255–30256. https://doi.org/10.1007/s11356-018-3001-3

    Article  CAS  Google Scholar 

  25. Song Y, Han EH, Dong K, Shan D, Yim CD, You BS (2013) Microstructure and protection characteristics of the naturally formed oxide films on Mg–xZn alloys. Corros Sci 72:133–143. https://doi.org/10.1016/j.corsci.2013.03.021

    Article  CAS  Google Scholar 

  26. Dutta S, Jana TK, Halder SK, Maiti R, Dutta A, Kumar A, Chatterjee K (2020) Zn2Al-CO3 layered double hydroxide: adsorption, cytotoxicity and antibacterial performances. Chemistry Select 5:6162–6171. https://doi.org/10.1002/slct.202001264

    Article  CAS  Google Scholar 

  27. Marchon B, Carrazza J, Heinemann H, Somorjai GA (1988) TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon 26:507–514. https://doi.org/10.1016/0008-6223(88)90149-2

    Article  CAS  Google Scholar 

  28. Dorward RC, Bouvier C (1998) A rationalization of factors affecting strength, ductility and toughness of AA6061-type Al-Mg-Si-(Cu) alloys. Mat Sci Eng A 254:33–44. https://doi.org/10.1016/S0921-5093(98)00761-8

    Article  Google Scholar 

  29. Zang J, Yu S, Zhu G, Zhou X (2019) Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method. Surf Coat Tech 380:125078. https://doi.org/10.1016/j.surfcoat.2019.125078

    Article  CAS  Google Scholar 

  30. Arai Y, Ogawa M (2009) Preparation of Co-Al layered double hydroxides by the hydrothermal urea method for controlled particle size. Appl Clay Sci 42:601–604. https://doi.org/10.1016/j.clay.2008.04.011

    Article  CAS  Google Scholar 

  31. Génin JMR, Bourrié G, Trolard F, Abdelmoula M, Jaffrezic A, Refait P, Maitre V, Humbert B, Herbillon A (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) green rusts: occurrences of the mineral in hydromorphic soils. Environ Sci Technol 32:1058–1068. https://doi.org/10.1021/es970547m

    Article  Google Scholar 

  32. Ehsani A, Mahjani MG, Naseri M, Jafarian M (2014) Influence of electrosynthesis conditions and Al2O3 nanoparticles on corrosion protection effect of polypyrrole films. Anti-Corros Methods M 61:146–152. https://doi.org/10.1108/ACMM-07-2012-1193

    Article  CAS  Google Scholar 

  33. Zhang B, Zhu Q, Li Y, Hou B (2018) Facile fluorine-free one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion. Chem Eng J 352:625–633. https://doi.org/10.1016/j.cej.2018.07.074

    Article  CAS  Google Scholar 

  34. Cao Y, Zheng D, Li X, Lin J, Wang C, Dong S, Lin C (2018) Enhanced corrosion resistance of superhydrophobic layered double hydroxide (LDH) films with long-term stability on Al substrate. ACS Appl Mater Interfaces 10:15150–15162. https://doi.org/10.1021/acsami.8b02280

    Article  CAS  Google Scholar 

  35. Yin X, Yu S, Hu J, Li H, Lv Z, Zhou X (2019) Facile fabrication of a durable Ni3S2 nanorod arrays superhydrophobic surface with self-cleaning and degradation properties. J Alloy Compd 791:864–873. https://doi.org/10.1016/j.jallcom.2019.03.367

    Article  CAS  Google Scholar 

  36. Li H, Yu S (2017) Fabrication and theoretical explanation of the superhydrophobic Cu-Zn coating with dandelion-like CuO microstructure. J Alloy Compd 691:195–205. https://doi.org/10.1016/j.jallcom.2016.08.272

    Article  CAS  Google Scholar 

  37. Rives V (2002) Characterisation of layered double hydroxides and their decomposition products. Mater Chem Phys 75:19–25. https://doi.org/10.1016/S0254-0584(02)00024-X

    Article  CAS  Google Scholar 

  38. Zhang B, Duan J, Huang Y, Hou B (2020) Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness. J Mater Sci Technol 71:1–11. https://doi.org/10.1016/j.jmst.2020.09.011

    Article  CAS  Google Scholar 

  39. Li S, Liu Y, Tian Z, Liu X, Han Z, Ren L (2020) Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification. Surf Coat Tech 403:126355. https://doi.org/10.1016/j.surfcoat.2020.126355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 19CX05001A) and the Natural Science Foundation of Shandong Province of China (No. ZR2019MEM020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Zhao, Y., Liu, L. et al. Facile fabrication and evaluation of self-healing Zn-Al layered double hydroxide superhydrophobic coating on aluminum alloy. J Mater Sci 56, 14803–14820 (2021). https://doi.org/10.1007/s10853-021-06247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06247-9

Navigation