Skip to main content

Thermally induced flexible wood based on phase change materials for thermal energy storage and management


The applications of composite phase change materials were limited due to their poor energy utilization efficiency, low thermal conductivity and strong rigidity. In this work, thermally induced flexible wood based on phase change material was fabricated by impregnating delignified wood (DW) with graphene and a novel kind of hyperbranched polyurethane. The wood composite showed excellent softness and flexibility during the heating process of hyperbranched polyurethane. It also displayed suitable phase change temperature (28.1 °C and 36.3 °C) and acceptable latent heat (64.29 J/g and 70.26 J/g) for daily applications. Thermal conductivity of the composite reached 0.417 (W*m−1 K−1) after adding graphene, which was enhanced approximately by 414% compared with pure wood. The light harvest efficiency of the composite was also improved after the addition of graphene. Therefore, the thermally induced flexible wood based on phase change material has great potential for building energy conservation and wearable energy storage devices due to its excellent flexibility, high thermal energy storage capacity and outstanding temperature regulating performance.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15


  1. 1

    Bai L, Huan S, Xiang W, Rojas OJ (2018) Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem 20:1571–1582

    CAS  Article  Google Scholar 

  2. 2

    Bai L, Xiang W, Huan S, Rojas OJ (2018) Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromol 19:1674–1685

    CAS  Article  Google Scholar 

  3. 3

    Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Buildings 144:276–294

    Article  Google Scholar 

  4. 4

    Cellat K, Beyhan B, Konuklu Y, Dündar C, Karahan O, Güngör C et al (2019) 2 Years of monitoring results from passive solar energy storage in test cabins with phase change materials. Sol Energy 200:29–36

    Article  Google Scholar 

  5. 5

    Chen Q, Liu T, Tang C (2019) Tuning the stability and microstructure of fine pickering emulsions stabilized by cellulose nanocrystals. Ind Crops Product 141:111733

    CAS  Article  Google Scholar 

  6. 6

    Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R (2018) Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci 6:1392–1424

    Article  Google Scholar 

  7. 7

    Yang J, Tang L, Bai L, Bao R, Liu Z, Xie B, Yang M, Yang W (2019) High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater Horiz 6:250–273

    CAS  Article  Google Scholar 

  8. 8

    Liu H, Wang X, Wu D, Ji S (2019) Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy 172:599–617

    CAS  Article  Google Scholar 

  9. 9

    Yu C, Yang S, Pak S (2018) Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting. Energy Conver Manage 169:88–96

    CAS  Article  Google Scholar 

  10. 10

    Chen X, Zhao Y, Zhang Y, Lu A, Li X, Liu L et al (2019) A novel design and synthesis of multifunctional magnetic chitosan microsphere based on phase change materials. Mater Letter 237:185–187

    CAS  Article  Google Scholar 

  11. 11

    Diao Y, Liang L, Zhao Y, Wang Z, Bai F (2019) Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays. Appl Energy 233:894–905

    Article  Google Scholar 

  12. 12

    Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628

    CAS  Article  Google Scholar 

  13. 13

    Li Y, Li X, Liu D, Cheng X et al (2016) Fabrication and properties of polyethylene glycol- modified wood composite for energy storage and conversion. Resources 11:7790–7802

    CAS  Google Scholar 

  14. 14

    Zhang X, Wen R, Tang C, Wu B, Huang Z, Min X et al (2016) Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy Buildings 130:113–121

    Article  Google Scholar 

  15. 15

    Guo J, Xiang H, Wang Q, Hu C, Zhu M, Li L (2012) Preparation of poly (decaglycerol-co-ethylene glycol) copolymer as phase change material. Energy and Buildings 48:206–210

    Article  Google Scholar 

  16. 16

    Xiao C, Zhang G, Li Z, Yang X (2020) Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management. J Mater Chem A 8:14624–14633

    CAS  Article  Google Scholar 

  17. 17

    Mu B, Li M (2019) Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage. Sol Energy 188:230–238

    CAS  Article  Google Scholar 

  18. 18

    Chen K, Liu R, Zou C, Shao Q, Lan Y, Cai X, Zhai L (2014) Linear polyurethane ionomers as solid–solid phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 130:466–473

    CAS  Article  Google Scholar 

  19. 19

    Peng K, Chen C, Pan W, Liu W, Wang Z, Zhu L (2016) Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/ MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials. Sol Energy Mater Sol Cells 145:238–247

    CAS  Article  Google Scholar 

  20. 20

    Sarı A, Biçer A, Alkan C (2017) Thermal energy storage characteristics of poly (styrene-co-maleic anhydride)-graft-peg as polymeric solid–solid phase change materials. Solar Energy Mater Solar Cells 161:219–225

    Article  CAS  Google Scholar 

  21. 21

    Shao X, Wang C, Yang Y, Feng B, Zhu Z, Wang W et al (2020) Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage (II): isothermal melting and crystallization behaviors. Energy 289:118483

    Article  CAS  Google Scholar 

  22. 22

    Li G, Hong G, Dong D, Song W, Zhang X (2018) Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater 30:1801754

    Article  CAS  Google Scholar 

  23. 23

    Liu J, Wang Q, Ling Z, Fang X, Zhang Z (2017) A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion. Sol Energy Mater Sol Cells 169:280–286

    CAS  Article  Google Scholar 

  24. 24

    Wang F, Ling Z, Fang X, Zhang Z (2018) Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions. Sol Energy Mater Sol Cells 186:340–348

    CAS  Article  Google Scholar 

  25. 25

    Zha X, Zhou J, Zhou Y, Huang Q, He J, Francisco JS, Luo K, Du S (2016) Promising electron mobility and high thermal conductivity in Sc2CT2 (T¼ F, OH) MXenes. Nanoscale 8:6110–6117

    CAS  Article  Google Scholar 

  26. 26

    Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C (2017) MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A 5:22113–22119

    CAS  Article  Google Scholar 

  27. 27

    Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    CAS  Article  Google Scholar 

  28. 28

    Shang Y, Zhang D (2017) Preparation and characterization of three-dimensional graphene network encapsulating 1-hexadecanol composite. Appl Therm Eng 111:353–357

    CAS  Article  Google Scholar 

  29. 29

    Liu L, Zheng K, Yang Y (2018) Graphene aerogels enhanced phase change materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Sol Energy Mater Sol Cells 185:487–493

    CAS  Article  Google Scholar 

  30. 30

    Wang W, Cao H, Liu J, Jia S, Guo X, Sun W (2020) A thermal energy storage composite by incorporating microencapsulated phase change material into wood. RSC Adv 10:8097–8103

    CAS  Article  Google Scholar 

  31. 31

    Alkan C, Kaya K, Sarı A (2009) Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage. J Polym Environ 17:254

    CAS  Article  Google Scholar 

  32. 32

    Merlin K, Delaunay D, Soto J, Traonvouez L (2016) Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM. Appl Energy 166:107–116

    Article  Google Scholar 

  33. 33

    Wu W, Wu W, Wang S (2019) Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl Energy 236:10–21

    CAS  Article  Google Scholar 

  34. 34

    Qi X, Shao Y, Wu H, Yang J, Wang Y (2019) Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability. Composites Ence and Tech 181:107714

    CAS  Article  Google Scholar 

  35. 35

    Chen C, Kuang Y, Zhu S et al (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666

    CAS  Article  Google Scholar 

  36. 36

    Yang H, Chao W, Di X, Yang Z (2019) Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers Manage 200:112029

    CAS  Article  Google Scholar 

  37. 37

    Song J, Chen C, Wang C, Kuang Y, Li Y, Jiang F et al (2017) Superflexible wood. ACS Appl Mater Interfaces 9:23520–23527

    CAS  Article  Google Scholar 

  38. 38

    Liu S, Yan H, Fang Z, Guo Z, Wang H (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4:18652–18659

    CAS  Article  Google Scholar 

  39. 39

    Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu J (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    CAS  Article  Google Scholar 

  40. 40

    Jahan M, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    CAS  Article  Google Scholar 

  41. 41

    Jiang F, Hsieh Y (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohyd Polym 122:60–68

    CAS  Article  Google Scholar 

  42. 42

    Chen C, Hu L (2020) Nanoscale ion regulation in wood-based structures and their device Application. Adv Mater.

    Article  Google Scholar 

Download references


The work was supported by National Natural Science Foundation of China (32001258), National Key Research and Development Project of China (2017YFD0601105) and scientific research development fund project of Zhejiang Agriculture & Forestry University (2018FR042).

Author information



Corresponding authors

Correspondence to Xi Guo or Weisheng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Stephen Eichhorn

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Jia, S., Liu, J. et al. Thermally induced flexible wood based on phase change materials for thermal energy storage and management. J Mater Sci 56, 16570–16581 (2021).

Download citation