Skip to main content

Advertisement

Log in

DMSO-treated flexible PEDOT:PSS/PANi fiber electrode for high performance supercapacitors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wearable energy storage device nowadays gains great interest due to sharply increased demand for highly flexible, stretchable and embedded electronics, where fiber-based supercapacitor (FSC) is a competitive counterpart. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)/ polyaniline (PEDOT:PSS/PANi) fiber has been prepared via an accessible technique of one-dimensional (1D) self-assembly. Nevertheless, PSS as the main cross-linking matrix may lead to more hopping sites for charge carriers, lessening the continuous electrically conductive path. Herein, PEDOT:PSS/PANi fiber was treated with dimethyl sulfoxide (DMSO) to remove the insulative PSS chains. Coupling high electroactivity of PANi and high conductivity of PEDOT, the optimized DMSO-PEDOT:PSS/PANi fiber displays enhanced electrochemical properties with a high specific capacitance (Cs) of 367.7 F g−1 at 0.5 A g−1 and good rate capability. Moreover, a symmetric FSC based on the DMSO-P4P6 fiber exhibits a high energy density of 42.4 Wh kg−1 at a power density of 302.3 W kg−1.

Graphical abstract

PEDOT: PSS/PANi fibers are prepared via a simple technique of one-dimensional (1D) self-assembly, and the PEDOT: PSS/PANi fiber exhibits superior flexibility, electrical conductivity, and electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lou Z, Li L, Wang LL, Shen GZ (2017) Recent progress of self-powered sensing systems for wearable electronics. Small 13:1701791. https://doi.org/10.1002/smll.201701791

    Article  CAS  Google Scholar 

  2. Li JH, Zhao J, Rogers JA (2019) Materials and designs for power supply systems in skin-interfaced electronics. Acc Chem Res 52:53–62. https://doi.org/10.1021/acs.accounts.8b00486

    Article  CAS  Google Scholar 

  3. Shi JD, Liu S, Zhang LS, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen JW, Chen W, Choi Y, Tao XM (2020) Smart textile-integrated microelectronic systems for wearable applications. Adv Mater 32(5):1901958. https://doi.org/10.1002/adma.201901958

    Article  CAS  Google Scholar 

  4. Zhao J, Gong JW, Zhou CL, Miao CX, Hu R, Zhu K, Cheng K, Ye K, Yan J, Cao DX, Zhang XF, Wang GL (2020) Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Appl Surf Sci 508:145260. https://doi.org/10.1016/j.apsusc.2020.145260

    Article  CAS  Google Scholar 

  5. Zhang LS, Lin SP, Hua T, Huang BL, Liu SR, Tao XM (2018) Fiber-based thermoelectric generators: materials, devicestructures, fabrication, characterization, and applications. Adv Energy Mater 8:1700524. https://doi.org/10.1002/adma.201901806

    Article  CAS  Google Scholar 

  6. Yao BW, Wang HY, Zhou QG, Wu MN, Zhang M, Li C, Shi GQ (2017) Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv Mater 29:1700974. https://doi.org/10.1002/adma.201700974

    Article  CAS  Google Scholar 

  7. Zhai SL, Karahan HE, Wang CJ, Pei ZX, Wei L, Chen Y (2020) 1D supercapacitors for emerging electronics: current status and future directions. Adv Mater 32:1902387. https://doi.org/10.1002/adma.201902387

    Article  CAS  Google Scholar 

  8. Chen D, Jiang K, Huang TT, Shen Z (2020) Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv Mater 32:1901806. https://doi.org/10.1002/adma.201901806

    Article  CAS  Google Scholar 

  9. Yin Q, Li DP, Zhang J, Zhao YJ, Wang C, Han JB (2019) CoNi-layered double hydroxide array on graphene-based fiber as a new electrode material for microsupercapacitor. Appl Surf Sci 487:1–8. https://doi.org/10.1016/j.apsusc.2019.04.253

    Article  CAS  Google Scholar 

  10. Liu GQ, Jiang FX, Liu J, Liu CC, Xu JK, Jiang QL, Zheng N, Nie GM, Liu PP (2020) Solvent treatment inducing ultralong cycle stability poly (3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as binding-free electrodes for supercapacitors. Int J Energy Res 44:5856–5865. https://doi.org/10.1002/er.5352

    Article  CAS  Google Scholar 

  11. Wang ZP, Cheng JL, Zhou JW, Zhang JX, Huang H, Yang J, Li YC, Wang B (2018) All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 50:106–117. https://doi.org/10.1016/j.nanoen.2018.05.029

    Article  CAS  Google Scholar 

  12. Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu J (2018) Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 10:44033–44040. https://doi.org/10.1021/acsami.8b15332

    Article  CAS  Google Scholar 

  13. Patil DS, Pawar SA, Kim JH, Patil PS, Shin JC (2016) Facile preparation and enhanced capacitance of the Ag-PEDOT: PSS/Polyaniline nanofiber network for supercapacitors. Electrochim Acta 213:680–690. https://doi.org/10.1016/j.electacta.2016.07.156

    Article  CAS  Google Scholar 

  14. Zhang YL, Wang L, Zhang JL, Song P, Xiao ZR, Liang CB, Qiu H, Kong J, Gu JW (2019) Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos Sci Technol 183:107833. https://doi.org/10.1016/j.compscitech.2019.107833

    Article  CAS  Google Scholar 

  15. Zhou QQ, Li YR, Huang L, Li C, Shi GQ (2014) Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J Mater Chem A 2:17489–17494. https://doi.org/10.1039/C4TA03639E

    Article  CAS  Google Scholar 

  16. Tang L, Zhang J, Tang Y, Kong J, Liu T, Gu J (2021) Polymer matrix wave-transparent composites: a review. J Mater Sci Technol 75:225–251. https://doi.org/10.1016/j.jmst.2020.09.017

    Article  Google Scholar 

  17. Dai TY, Jia YJ (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558. https://doi.org/10.1016/j.polymer.2011.04.006

    Article  CAS  Google Scholar 

  18. Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450. https://doi.org/10.1016/j.polymer.2004.10.001

    Article  CAS  Google Scholar 

  19. Liu FW, Luo SJ, Liu D, Chen W, Huang Y, Dong L, Wang L (2017) Facile processing of free-standing Polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interfaces 9:33791–33801. https://doi.org/10.1021/acsami.7b08382

    Article  CAS  Google Scholar 

  20. Zhou WQ, Xu JK (2016) High-operating-voltage all-solid-state symmetrical supercapacitors based on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films treated by organic solvents. Electrochim Acta 222:1895–1902. https://doi.org/10.1016/j.electacta.2016.11.181

    Article  CAS  Google Scholar 

  21. Sriprachuabwong C, Karuwan CP, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) A Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22:25501–25503. https://doi.org/10.1039/C2JM14005E

    Article  Google Scholar 

  22. Huangfu YM, Ruan KP, Qiu H, Lu YJ, Liang CB, Kong J, Gu JW (2019) Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos Part A Appl Sci Manuf 121:265–272. https://doi.org/10.1016/j.compositesa.2019.03.041

    Article  CAS  Google Scholar 

  23. Wang SC, Zhou Y, Liu YJ, Wang L, Gao CM (2020) Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J Mater Chem C 8:528–535. https://doi.org/10.1039/C9TC06300E

    Article  Google Scholar 

  24. Zhang Z, Chen GM, Wang HF, Li X (2015) Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 10:149–153. https://doi.org/10.1002/asia.201403100

    Article  CAS  Google Scholar 

  25. Mahat MM, Mawad D, Nelson GW, Fearn S, Palgrave RG, Payne DJ, Stevens MM (2015) Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. J Mater Chem C 3:7180–7186. https://doi.org/10.1039/C5TC01038A

    Article  CAS  Google Scholar 

  26. Wang LM, Yao Q, Bi H, Huang FQ, Wang Q, Chen LD (2015) PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 3:7086–7092. https://doi.org/10.1039/C4TA06422D

    Article  CAS  Google Scholar 

  27. Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck WR, Berggren M (2006) The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes. Chem Mater 18:4354–4360. https://doi.org/10.1021/cm061032+

    Article  CAS  Google Scholar 

  28. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723. https://doi.org/10.1038/NMAT3635

    Article  CAS  Google Scholar 

  29. Massonnet N, Carella A, de Geyer A, Faure-Vincent J, Simonato JP (2015) Metallic behaviour of acid doped highly conductive polymers. Chem Sci 6:412–417. https://doi.org/10.1039/c4sc02463j

    Article  CAS  Google Scholar 

  30. Liu J, Zhu ZY, Zhou WQ, Liu PP, Liu P, Liu GQ, Xu JK, Jiang QL, Jiang FX (2020) Flexible metal-free hybrid hydrogel thermoelectric fibers. J Mater Sci 55:8376–8387. https://doi.org/10.1007/s10853-020-04382-3

    Article  CAS  Google Scholar 

  31. Zhou QQ, Teng WL, Jin YH, Sun L, Hu P, Li HY, Wang LZ, Wang JS (2020) Highly-conductive PEDOT: PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability. Electrochim Acta 334:135530. https://doi.org/10.1016/j.electacta.2019.135530

    Article  CAS  Google Scholar 

  32. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sour 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  33. Liu FW, Xie LY, Wang L, Chen W, Wei W, Chen X, Luo SJ, Dong L, Dai QL, Huang Y, Wang L (2020) Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexibility and stability. Nano-Micro Lett 12:17. https://doi.org/10.1007/s40820-019-0342-5

    Article  CAS  Google Scholar 

  34. Yang ZK, Shi DJ, Dong WF, Chen MQ (2020) Self-standing hydrogels composed of conducting polymers for all-hydrogel-state supercapacitors. Chem A Eur J 26:1846–1855. https://doi.org/10.1002/chem.201904357

    Article  CAS  Google Scholar 

  35. Xie YB, Wang D, Ji JJ (2016) Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays. Energy Technol 4:714–721. https://doi.org/10.1002/ente.201500460

    Article  CAS  Google Scholar 

  36. Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157. https://doi.org/10.1016/j.electacta.2013.12.089

    Article  CAS  Google Scholar 

  37. Park JH, Park OO (2002) Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J Power Sour 111:185–190. https://doi.org/10.1016/S0378-7753(02)00304-X

    Article  CAS  Google Scholar 

  38. Jain D, Hashmi SA, Kaur A (2016) Surfactant assisted polyaniline nanofibres-reduced graphene oxide (SPG) composite as electrode material for supercapacitors with high rate performance. Electrochim Acta 222:570–579. https://doi.org/10.1016/j.electacta.2016.11.010

    Article  CAS  Google Scholar 

  39. Li Y, Fang YZ, Liu H, Wu XM, Lu Y (2012) Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors. Nanoscale 4:2867–2869. https://doi.org/10.1039/C2NR30252G

    Article  CAS  Google Scholar 

  40. Jaidev JRI, Mishra AK, Ramaprabhu S (2011) Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601–17605. https://doi.org/10.1039/C1JM13191E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51762018 and 51863009), the Natural Science Foundation of Jiangxi Province (20181ACB20010), Foundation of Jiangxi Science and Technology Normal University (2019BSQD001 and 2019BSQD018), the Academic and Technical Leader Plan of Jiangxi Provincial Main Disciplines (20182BCB22014) and the Jiangxi Provincial Department of Education (GJJ190584 and GJJ190612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengxing Jiang, Jingkun Xu or Peipei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Chen, X., Liu, C. et al. DMSO-treated flexible PEDOT:PSS/PANi fiber electrode for high performance supercapacitors. J Mater Sci 56, 14632–14643 (2021). https://doi.org/10.1007/s10853-021-06226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06226-0

Navigation