Skip to main content
Log in

A novel design by constructing MoS2/WS2 multilayer film doped with tantalum toward superior friction performance in multiple environment

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDs) are easily oxidized in the humid atmosphere, leading to a decrease in their lubricating properties and limiting their application. In this study, a MoS2/WS2 multilayer film doped with tantalum (MoS2/WS2-Ta) is fabricated by magnetron sputtering to improve the corrosion and oxidation resistance of TMDs. Results show that doping of Ta makes the structure of the MoS2/WS2 multilayer film more compact, and the MoS2 and WS2 crystals exhibit a stronger (0002) preferred orientation than that of un-doped sample. Such compact structure and (0002) preferred orientation of MoS2/WS2-Ta can realize a high corrosion resistance, i.e., a more positive corrosion potential and a lower corrosion current density in comparison with the MoS2/WS2 multilayer. Furthermore, the friction properties of MoS2/WS2 multilayer film doped with 1.1 at% of Ta are improved remarkably under both of high temperature (370 °C in air) and vacuum conditions, the result is attributed to its high mechanical properties and (0002) preferred orientation. In a word, the combination of multilayer structure and doping of Ta into the films is a promising approach to accurately design the TMDs toward a wide temperature range and environmentally adaptive lubricants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Donnet C, Martin JM, Mogne TL, Belin M (1996) Super-low friction of MoS2 coatings in various environments. Tribol Int 29:123–128

    Article  CAS  Google Scholar 

  2. Mogne TL, Donnet C, Martin JM, Tonck A, Moncoffre N (1998) Nature of super-lubricating MoS2 physical vapor deposition coatings. J Vac Sci Technol A 12:1998–2004

    Article  Google Scholar 

  3. Jayaram G, Doraiswamy N, Marks LD, Hilton MR (1994) Ultrahigh vacuum high resolution transmission electron microscopy of sputter-deposited MoS2 thin films. Surf Coat Technol 68–69:439–445

    Article  Google Scholar 

  4. Ren S, Shang K, Cui M, Wang L, Pu J, Yi P (2019) Structural design of MoS2-based coatings toward high humidity and wide temperature. J Mater Sci 54:11889–11902. https://doi.org/10.1007/s10853-019-03754-8

    Article  CAS  Google Scholar 

  5. Renevier NM, Fox VC, Teer DG, Hampshire J (2000) Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf Coat Technol 127:24–37

    Article  CAS  Google Scholar 

  6. Simmonds MC, Savan A, Pflüger E, Swygenhoven HV (2000) Mechanical and tribological performance of MoS2 co-sputtered composites. Surf Coat Technol 126:15–24

    Article  CAS  Google Scholar 

  7. Teer DG, Hampshire J, Fox V, Bellido-Gonzalez V (1997) The tribological properties of MoS2/metal composite coatings deposited by closed field magnetron sputtering. Surf Coat Technol 94–95:572–577

    Article  CAS  Google Scholar 

  8. Wahl KJ, Dunn DN, Singer IL (1999) Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230:175–183

    Article  CAS  Google Scholar 

  9. Hilton MR, Jayaram G, Marks LD (1998) Microstructure of cosputter-deposited metal- and oxide-MoS2 solid lubricant thin films. J Mater Res 13:1022–1032

    Article  CAS  Google Scholar 

  10. Simmonds MC, Savan A, Swygenhoven HV, Pflüger E, Mikhailov S (1998) Structural, morphological, chemical and tribological investigations of sputter deposited MoSx/metal multilayer coatings. Surf Coat Technol 108:340–344

    Article  Google Scholar 

  11. Bellido-González V, Jones AHS, Hampshire J, Allen TJ, Witts J, Teer DG, Ma KJ, Upton D (1997) Tribological behaviour of high performance MoS2 coatings produced by magnetron sputtering. Surf Coat Technol 97:687–693

    Article  Google Scholar 

  12. Simmonds MC, Savan A, Swygenhoven HV, Pflüger E (1999) Characterisation of magnetron sputter deposited MoSx/metal multilayers. Thin Solid Film 354:59–65

    Article  CAS  Google Scholar 

  13. Wahl KJ, Seitzman LE, Bolster RN, Singer IL (1995) Low-friction, high-endurance, ion-beam-deposited Pb–Mo–S coatings. Surf Coat Technol 73:152–159

    Article  CAS  Google Scholar 

  14. Lince JR, Hilton MR, Bommannavar AS (1995) Metal incorporation in sputter-deposited MoS2 films studied by extended x-ray absorption fine structure. J Mater Res 10:2091–2105

    Article  CAS  Google Scholar 

  15. Weise G, Kraut D, Olbrich WG, Kampschulte G (1994) Influence of variations of the steel substrate-Cr3Si(Cr)/MoS2-x film system on wear properties. Surf Coat Technol 68–69:512–518

    Article  Google Scholar 

  16. Jayaram G, Marks LD, Hilton R (1995) Nanostructure of Au-20% Pd layers in MoS2 multilayer solid lubricant films. Surf Coat Technol 76–77:393–399

    Article  Google Scholar 

  17. Renevier NM, Hamphire J, Fox VC, Witts J, Allen T, Teer DG (2001) Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surf Coat Technol 142–144:67–77

    Article  Google Scholar 

  18. Koo KF, Schrader GL (1994) Method for preparing basal oriented molybdenum disulfide (MoS2) thin films. US Pat 5370778.

  19. Zabinski JS, Donley MS, Walck SD, Schneider TR, Mcdevitt NT (1995) The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 Films. Tibol Trans 38:894–904

    CAS  Google Scholar 

  20. Ren S, Li H, Cui M, Wang L, Pu J (2017) Functional regulation of Pb-Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl Surf Sci 401:362–372

    Article  CAS  Google Scholar 

  21. Weise G, Teresiak A, Bächer I, Markschläger P, Kampschulte G (1995) Influence of magnetron sputtering process parameters on wear properties of steel/Cr3Si or Cr/MoSx. Surf Coat Technol 76–77:382–392

    Article  Google Scholar 

  22. Kao WH, Su YL (2004) Optimum MoS2–Cr coating for sliding against copper, steel and ceramic balls. Mater Sci Eng 368:239–248

    Article  CAS  Google Scholar 

  23. Xu S, Gao X, Hu M, Sun J, Jiang D, Zhou F, Liu W, Weng L (2014) Nanostructured WS2–Ni composite films for improved oxidation, resistance and tribological performance. Appl Surf Sci 288:15–25

    Article  CAS  Google Scholar 

  24. Li H, Xie M, Zhang G, Fan X, Li X, Zhu M, Wang L (2018) Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method. Appl Surf Sci 435:48–54

    Article  CAS  Google Scholar 

  25. Xu S, Gao X, Sun J, Hu M, Wang D, Jiang D, Zhou F, Weng L, Liu W (2014) Comparative study of moisture corrosion to WS2 and WS2/Cu multilayer films. Surf Coat Technol 247:30–38

    Article  CAS  Google Scholar 

  26. Gao X, Fu Y, Jiang D, Wang D, Xu S, Liu W, Weng L, Yang J, Sun J, Hu M (2018) Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment. Surf Coat Technol 353:8–17

    Article  CAS  Google Scholar 

  27. Watanabe S, Noshiro J, Miyake S (2004) Friction properties of WS2/MoS2 multilayer films under vacuum environment. Surf Coat Technol 188–189:644–648

    Article  CAS  Google Scholar 

  28. Watanabe S, Noshiro J, Miyake S (2004) Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf Coat Technol 183:347–351

    Article  CAS  Google Scholar 

  29. Zeng C, Pu J, Wang H, Zheng S, Chen R (2020) Influence of microstructure on tribological properties and corrosion resistance of MoS2/WS2 films. Ceram Int 46:13774–13783

    Article  CAS  Google Scholar 

  30. Baran Ö (2016) Adhesion and fatigue resistance of Ta-doped MoS2 composite coatings deposited with pulsed-DC magnetron sputtering. J Adhes Sci Technol 31:1181–1195

    Article  CAS  Google Scholar 

  31. Liu X, Ma GJ, Sun G, Duan YP, Liu SH (2013) MoSx-Ta composite coatings on steel by d.c magnetron sputtering. Vacuum 89:203–208

    Article  CAS  Google Scholar 

  32. Stupp BC (1981) Synergistic effects of metals co-sputtered with MoS2. Thin Solid Film 84:257–266

    Article  CAS  Google Scholar 

  33. Lince JR, Carre DJ, Fleischauer PD (1986) Effects of argon ion bombardment on the basal plane surface of MoS2. Langmuir 2(6):805–808

    Article  CAS  Google Scholar 

  34. Dimigen H, Hübsch H, Willich P, Reichelt K (1985) Stoichiometry and friction properties of sputtered MoSx layers. Thin Solid Film 129:79–91

    Article  CAS  Google Scholar 

  35. Zeng C, Pu J, Wang H, Zheng S, Wang L, Xue Q (2019) Study on atmospheric tribology performance of MoS2–W films with self-adaption to temperature. Ceram Int 45:15834–15842

    Article  CAS  Google Scholar 

  36. Qin X, Ke P, Wang A, Kim KH (2013) Microstructure, mechanical and tribological behaviors of MoS2–Ti composite coatings deposited by a hybrid HIPIMS method. Surf Coat Technol 228:275–281

    Article  CAS  Google Scholar 

  37. Gardos MN (1988) The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol Trans 31:214–227

    Article  CAS  Google Scholar 

  38. Mikhailov S, Savan A, Pflüger E, Knoblauch L, Hauert R, Simmonds M, Swygenhoven HV (1998) Morphology and tribological properties of metal (oxide)–MoS2 nanostructured multilayer coatings. Surf Coat Technol 105(1–2):175–183

    Article  CAS  Google Scholar 

  39. Li H, Zhang G, Wang L (2016) Low humidity-sensitivity of MoS2/Pb nanocomposite coatings. Wear 350–351:1–9

    Article  CAS  Google Scholar 

  40. Duan Z, Zhao X, Nai Z, Qiao L, Xu J, Wang P, Liu W (2019) Mo–S–Ti–C nanocomposite films for solid-state lubrication. ACS Appl Nano Mater 2:1302–1312

    Article  CAS  Google Scholar 

  41. NIST X-Ray Photoelectron Spectroscopy Database, Version 3.3, National Institute of Standards and Technology, USA, 2003.

  42. Shang K, Zheng S, Ren S, Pu J, He D, Liu S (2018) Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction. Appl Surf Sci 437:233–244

    Article  CAS  Google Scholar 

  43. Bertóti I, Mohai M, Renevier NM, Szilágyi E (2000) XPS investigation of ion beam treated MoS2–Ti composite coatings. Surf Coat Technol 125:173–178

    Article  Google Scholar 

  44. Deepthi B, Barshilia HC, Rajam KS, Konchady MS, Pai DM, Sankar J (2011) Structural, mechanical and tribological investigations of sputter deposited CrN-WS2 nanocomposite solid lubricant coatings. Tribol Int 44:1844–1851

    Article  CAS  Google Scholar 

  45. Sundberg J, Nyberg H, Särhammar E, Gustavsson F, Kubart T, Nyberg T, Jacobson S, Jansson U (2013) Influence of Ti addition on the structure and properties of low-friction W–S–C coatings. Surf Coat Technol 232:340–348

    Article  CAS  Google Scholar 

  46. Cao H, Wen F, Kumar S, Rudolf P, Hosson JD, Pei Y (2018) On the S/W stoichiometry and triboperformance of WSxC(H) coatings deposited by magnetron sputtering. Surf Coat Technol 365:41–51

    Article  CAS  Google Scholar 

  47. El-Moneim AA, Ismail KM, Badawy WA (2003) Electrochemical and XPS studies of sputter-deposited ternary Mn–Ta–Cr alloys in chloride-free and chloride-containing sulphuric acid solutions. Electrochim Acta 47:2463–2472

    Article  Google Scholar 

  48. Mutafov P, Evaristo M, Cavaleiro A, Polcar T (2015) Structure, mechanical and tribological properties of self-lubricant W–S–N coatings. Surf Coat Technol 261:7–14

    Article  CAS  Google Scholar 

  49. Hamdy AS (2011) Electrochemical behavior of diamond-like-carbon coatings deposited on AlTiC (Al2O3+TiC) ceramic composite substrate in HCl solution. Electrochim Acta 56:1554–1562

    Article  CAS  Google Scholar 

  50. Clauss FJ (1972) Solid lubricants and self-lubricating solids. Academic Press, Elsevier, pp 164–194

    Google Scholar 

  51. Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NH, Basirun WJ, Sulaiman EB (2017) Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti-6Al-4V. J Mech Behav Biomed Mater 66:159–171

    Article  CAS  Google Scholar 

  52. Li H, Zhang Q, Yap CC, Tay BK, Edwin TH, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of raman scattering. Adv Funct Mater 22:1385–1390

    Article  CAS  Google Scholar 

  53. Krishnan RR, Gopchandran KG, MahadevanPillai VP, Ganesan V, Sathe V (2009) Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films. Appl Surf Sci 255:7126–7135

    Article  CAS  Google Scholar 

  54. Wang Y, He P, Lei W, Dong F, Zhang T (2014) Novel FeMoO4/graphene composites based electrode materials for supercapacitors. Compos Sci Technol 103:16–21

    Article  CAS  Google Scholar 

  55. Boucherit N, Hugot-Le Goff A, Joiret S (1991) Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions. Corros Sci 32(5–6):497–507

    Article  CAS  Google Scholar 

  56. Prasad SV, McDevitt NT, Zabinski JS (1999) Tribology of tungsten disulfide films in humid environments: the role of a tailored metal-matrix composite substrate. Wear 230:24–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (No. U1737214, 52005489), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51825505), the Zhejiang Provincial Natural Science Foundation (Grant No. LR20E050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siming Ren or Jibin Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zhang, C., Zeng, C. et al. A novel design by constructing MoS2/WS2 multilayer film doped with tantalum toward superior friction performance in multiple environment. J Mater Sci 56, 17615–17631 (2021). https://doi.org/10.1007/s10853-021-06217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06217-1

Navigation