Skip to main content

Advertisement

Log in

Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocellulose products derived from different forms of biomass have significant importance in the modern era. This is due to its extraordinary physical characteristics, wide surface area as well as its biodegradability, which lead to being promising reinforcements as a nanomaterial. The nanomaterials which represent the cellulosic structures comprise nanocellulose reinforcements with biodegradable characteristics and tremendous ability to be used in eco-friendly applications to supplant fossil-based products. Meanwhile, the syntheses approach of such nanoscale structures still possesses challenging tasks at nanoscales. In addition, the virtuous distribution of nanocellulose in the hydrophobic polymer matrix has still difficulties to produce high-performance nanomaterials. Consequently, this study concludes many approaches and techniques to structural alteration of cellulosic materials to improve the distribution of nanocellulose to enhance the characteristics and features of nanocomposites. The macroscale and nanoscale cellulosic structures get popularity because of their high strength, stiffness, biodegradability, renewability, and use in the preparation of nanocomposites. Application of cellulose nanofibres for the production of nanocomposites is a relatively recent research field. Cellulose macro- and nanofibres can be used as insulation nanocomposite materials because of the improved mechanical, thermal, and biodegradation properties of nanocomposites. Cellulose fibres are hydrophilic, so it became important to improve their surface roughness for the production of nanocomposites with improved properties. This article includes the surface modifications of cellulose fibres by different methods as well as production processes, properties, and various applications of nanocellulose and cellulosic nanocomposites. A high thermal conductivity of cellulosic nanocomposite material for electronic devices can be obtained by combining cellulose nanofibrils (CNF) as the framework material with carbon nanotubes, graphene, and inorganic nitrides. Additionally, the research developments in this field with prospective applications of CNF-based materials for supercapacitors, lithium-ion batteries, and solar cells are emphasized. Moreover, the emerging challenges of different cellulosic nanofibrils-based energy storage devices have been discussed in this review paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(© Elsevier 2020)

Figure 2

(© Elsevier 2014), ACS (© ACS 2018, 2007) and Wiley (© Wiley 1998)

Figure 3

(© Elsevier 2014, 2021) and ACS (© ACS 2011)

Figure 4
Figure 5
Figure 6
Figure 7

(© Wiley 2015)

Figure 8

(© Wiley 2011)

Similar content being viewed by others

References

  1. Hiasa S et al (2014) Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Ind Crops Prod 62:280–285

    Article  CAS  Google Scholar 

  2. Almasi H et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly (lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31

    Article  Google Scholar 

  3. Thakur VK, Kessler MR (2016) Nano-cellulose reinforced chitosan nanocomposites for packaging and biomedical applications. In: Green Biorenewable Biocomposites. Apple Academic Press. pp 509–526

  4. Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohyd Polym 135:18–26

    Article  CAS  Google Scholar 

  5. Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Prec Eng Manufact-Green Tech 2(2):197–213

    Article  Google Scholar 

  6. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412

    Article  CAS  Google Scholar 

  7. Duran N, Paula Lemes A, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Rec Patents Nanotechnol 6(1): 16–28

  8. Ogundare SA, Van Zyl WE (2019) A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 1–40

  9. Motaung TE, Linganiso LZ (2018) Critical review on agrowaste cellulose applications for biopolymers. Int J Plast Technol 22(2):185–216

    Article  CAS  Google Scholar 

  10. Radotić K, Mićić M (2016) Methods for extraction and purification of lignin and cellulose from plant tissues. Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer, pp 365–376

    Chapter  Google Scholar 

  11. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  Google Scholar 

  12. Kumar R, Sharma RK, Singh AP (2017) Cellulose based grafted biosorbents-Journey from lignocellulose biomass to toxic metal ions sorption applications-A review. J Mol Liq 232:62–93

    Article  CAS  Google Scholar 

  13. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37

  14. Tan K et al (2019) An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Sci Total Environ 650:1309–1326

    Article  CAS  Google Scholar 

  15. Russo A et al (2011) Pen-on-paper flexible electronics. Adv Mater 23(30):3426–3430

    Article  CAS  Google Scholar 

  16. Abdalkarim SYH et al (2019) Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on–off drug release devices. Chem Eng J 375: 121979

  17. Wang Z et al (2017) Cellulose-based supercapacitors: Material and performance considerations. Adv Energy Mater 7(18):1700130

    Article  Google Scholar 

  18. Gunavathy P, Boominathan M Optimization of Cellulase Production of Pseudomonas Aeruginosa Sg21 Isolated From Sacred Groove, Puducherry, India

  19. Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus 7:1052–1056

    Google Scholar 

  20. Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  21. Islam F, Roy N (2019) Isolation and characterization of cellulase-producing bacteria from sugar industry waste. American J BioSci 7(1):16–24

    Article  CAS  Google Scholar 

  22. Chen H (2014) Chemical composition and structure of natural lignocellulose. Biotechnology of lignocellulose. Springer, pp 25–71

    Chapter  Google Scholar 

  23. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432

    Article  CAS  Google Scholar 

  24. Torres F, Diaz R (2004) Morphological characterisation of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym Polym Compos 12(8):705–718

    CAS  Google Scholar 

  25. Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  26. Rong MZ et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Article  CAS  Google Scholar 

  27. Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119(3081):80–82

    Article  CAS  Google Scholar 

  28. Thomas LH et al (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476

    Article  CAS  Google Scholar 

  29. Hult E-L, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10(2):103–110

    Article  CAS  Google Scholar 

  30. Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  31. Brunner PH, Roberts PV (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 18(3):217–224

    Article  CAS  Google Scholar 

  32. Lapina V, Akhremkova G (2006) Correlations between the adsorption and structural properties of SV-1 phytoadsorbent and its main components. Russ J Phys Chem 80(7):1164–1166

    Article  CAS  Google Scholar 

  33. Kocherbitov V et al (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112(12):3728–3734

    Article  CAS  Google Scholar 

  34. Virkutyte J, Jegatheesan V, Varma RS (2012) Visible light activated TiO2/microcrystalline cellulose nanocatalyst to destroy organic contaminants in water. Biores Technol 113:288–293

    Article  CAS  Google Scholar 

  35. Monier M, Akl M, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134

    Article  CAS  Google Scholar 

  36. Hurtado PL et al (2016) A review on the properties of cellulose fibre insulation. Build Environ 96:170–177

    Article  Google Scholar 

  37. Chinga-Carrasco G (2002) Microscopy and computerized image analysis of wood pulp fibres multi-scale structures. Microscopy: Sci Tech, Appl Educ, Formatex, Badajoz, p 2182–2189

  38. Farooq A et al (2020) Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol

  39. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325

    Article  CAS  Google Scholar 

  40. Bao C et al Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium bromide-enhanced Pickering emulsions. Colloid Surf A: Physicochem Eng Aspects. 608: 125442

  41. Ureña-Benavides EE et al (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  Google Scholar 

  42. Lizundia E et al (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: Material properties and post-use analysis. Biomacromol 19(7):2618–2628

    Article  CAS  Google Scholar 

  43. Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194

    Article  CAS  Google Scholar 

  44. Sobhy MS, Tammam M (2010) The influence of fiber length and concentration on the physical properties of wheat husk fibers rubber composites. Int J Polym Sci

  45. Khalid M et al (2008) Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Mater Des 29(1):173–178

    Article  CAS  Google Scholar 

  46. Lee SM (1989) International encyclopedia of composites. 1989: VCH.

  47. Kochetkova T et al (2020) Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Acta Biomaterialia

  48. Stevens CV (2010) Industrial applications of natural fibres: structure, properties and technical applications. vol 10. John Wiley & Sons

  49. Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  50. Kunaver M, Anžlovar A, Žagar E (2016) The fast and effective isolation of nanocellulose from selected cellulosic feedstocks. Carbohyd Polym 148:251–258

    Article  CAS  Google Scholar 

  51. Sukyai P et al (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int 107:528–535

    Article  CAS  Google Scholar 

  52. Ventura-Cruz S, Flores-Alamo N, Tecante A (2020) Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide. Int J Biol Macromol

  53. Ren H et al (2019) Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum. Cellulose 26(15):8367–8381

    Article  CAS  Google Scholar 

  54. Kian LK et al (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940

    Article  CAS  Google Scholar 

  55. Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int J Biol Macromol 138:837–845

    Article  CAS  Google Scholar 

  56. García-García D et al (2018) Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose 25(5):2925–2938

    Article  Google Scholar 

  57. Balter M (2009) Clothes make the (Hu) man, American Association for the Advancement of Science

  58. Strand EA (2012) The textile chaîne opératoire: using a multidisciplinary approach to textile archaeology with a focus on the ancient Near East. Paléorient 21–40

  59. Abdul Khalil H et al (2020) A Review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 12(8):1759

    Article  Google Scholar 

  60. Tayeb AH et al (2018) Cellulose nanomaterials—Binding properties and applications: a review. Molecules 23(10):2684

    Article  Google Scholar 

  61. dos Santos FA, Iulianelli GC, Tavares MIB (2016) The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications. Mater Sci Appl 7(05):257

    Google Scholar 

  62. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd Polym 89(2):613–622

    Article  CAS  Google Scholar 

  63. Klemm D et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides Ii. Springer, pp 49–96

    Chapter  Google Scholar 

  64. Carreño NL et al (2017) Advances in nanostructured cellulose-based biomaterials. Advances in Nanostructured Cellulose-based Biomaterials. Springer, pp 1–32

    Chapter  Google Scholar 

  65. Yang Y et al (2020) Recent progress on cellulose‐based ionic compounds for biomaterials. Adv Mater 2000717

  66. Köse K et al (2020) Cholesterol removal via cyclodextrin-decoration on cellulose nanocrystal (CNC)-grafted poly (HEMA-GMA) nanocomposite adsorbent. Cellulose, 1–17

  67. Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  68. Tabaii MJ, Emtiazi G (2018) Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Delivery Sci Tech 44:244–253

    Article  Google Scholar 

  69. Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotech 16(1):71

    Article  Google Scholar 

  70. Reverdy C et al (2018) One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids Surf, A 544:152–158

    Article  CAS  Google Scholar 

  71. Song W et al (2017) Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats. Biomacromol 18(10):3273–3279

    Article  CAS  Google Scholar 

  72. Wang X et al (2017) Cellulose-based nanomaterials for energy applications. Small 13(42):1702240

    Article  Google Scholar 

  73. Chen G et al (2017) Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets. Polymers 9(9):458

    Article  Google Scholar 

  74. Kalytta-Mewes A et al (2015) Carbon supported Ru clusters prepared by pyrolysis of Ru precursor-impregnated biopolymer fibers. J Mater Chem A 3(42):20919–20926

    Article  CAS  Google Scholar 

  75. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  76. Naderi A (2017) Nanofibrillated cellulose: properties reinvestigated. Cellulose 24(5):1933–1945

    Article  CAS  Google Scholar 

  77. Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    Article  CAS  Google Scholar 

  78. Gupta P et al (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236

    Article  CAS  Google Scholar 

  79. Su H et al (2018) Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal. J Colloid Interface Sci 510:77–85

    Article  CAS  Google Scholar 

  80. Ngwabebhoh FA, Erdem A, Yildiz U (2018) A design optimization study on synthesized nanocrystalline cellulose, evaluation and surface modification as a potential biomaterial for prospective biomedical applications. Int J Biol Macromol 114:536–546

    Article  CAS  Google Scholar 

  81. Saito T et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491

    Article  CAS  Google Scholar 

  82. Khalil HA et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Article  Google Scholar 

  83. Klemm D et al (2009) Nanocellulose materials–different cellulose, different functionality. In: Macromolecular symposia. Wiley Online Library

  84. Xu X et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8): 2999–3009

  85. Ilyas R, Sapuan S, Ishak M (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051

    Article  CAS  Google Scholar 

  86. Sabaruddin F, Paridah M (2018) Effect of lignin on the thermal properties of nanocrystalline prepared from kenaf core. in IOP Conference Series: Mater Sci Eng

  87. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohyd Polym 73(3):371–377

    Article  CAS  Google Scholar 

  88. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Tech 59(2):1311–1318

    Article  CAS  Google Scholar 

  89. Lavoine N et al (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  90. Chen W et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  91. Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55

    Article  CAS  Google Scholar 

  92. Rohaizu R, Wanrosli W (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639

    Article  CAS  Google Scholar 

  93. Fahma F et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17(5):977–985

    Article  CAS  Google Scholar 

  94. Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208

    Article  CAS  Google Scholar 

  95. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  CAS  Google Scholar 

  96. Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    Article  CAS  Google Scholar 

  97. Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  Google Scholar 

  98. Mondal S (2018) Review on nanocellulose polymer nanocomposites. Polym-Plast Technol Eng 57(13):1377–1391

    Article  CAS  Google Scholar 

  99. Dima S-O et al (2017) Bacterial nanocellulose from side-streams of kombucha beverages production: preparation and physical-chemical properties. Polymers 9(8):374

    Article  Google Scholar 

  100. Zhan T (2017) Improved bacterial nanocellulose production by co-cultivation

  101. Azeredo HM, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671

    Article  CAS  Google Scholar 

  102. Jozala AF et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072

    Article  CAS  Google Scholar 

  103. Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941

    Article  Google Scholar 

  104. Wågberg L et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795

    Article  Google Scholar 

  105. Ankerfors M, Lindström T (2009) Nanocellulose developments in Scandinavia. in Paper and coating chemistry symposium (PCCS)

  106. Sharma PR et al (2017) A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromol 18(8):2333–2342

    Article  CAS  Google Scholar 

  107. Sharma PR et al (2018) High aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties. ACS Appl Nano Mater 1(8):3969–3980

    Article  CAS  Google Scholar 

  108. Revin V et al (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49: 151–159

  109. Sharma PR, Varma AJ (2013) Functional nanoparticles obtained from cellulose: engineering the shape and size of 6-carboxycellulose. Chem Commun 49(78):8818–8820

    Article  CAS  Google Scholar 

  110. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171

    Article  CAS  Google Scholar 

  111. Parveen F, Patra T, Upadhyayula S (2016) Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids–a comparative study. Carbohyd Polym 135:280–284

    Article  CAS  Google Scholar 

  112. Souza AGd et al (2017) Cellulose nanostructures obtained from waste paper industry: a comparison of acid and mechanical isolation methods. Mater Res 20, 209–214

  113. Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Article  Google Scholar 

  114. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohyd Polym 32(3–4):177–191

    Article  CAS  Google Scholar 

  115. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1(9):546–575

    Article  CAS  Google Scholar 

  116. Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349(11–12):1847–1850

    Article  CAS  Google Scholar 

  117. Phanthong P et al (2018) Nanocellulose: Extraction and application. Carbon Res Conv 1(1):32–43

    Google Scholar 

  118. Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Buletin Stiintific, Series B: Chem Mater Sci 73(2):133–152

    CAS  Google Scholar 

  119. Filpponen EI (2009) The synthetic strategies for unique properties in cellulose nanocrystal materials

  120. Zaki ASC et al (2018) Isolation and characterization of nanocellulose structure from waste newspaper. J Adv Res Eng Knowl 5(1):27–34

    Google Scholar 

  121. Barbash V, Yashchenko O, Opolsky V (2018) Effect of hydrolysis conditions of organosolv pulp from kenaf fibers on the physicochemical properties of the obtained nanocellulose. Theoret Exp Chem 54(3):193–198

    Article  CAS  Google Scholar 

  122. Wulandari W, Rochliadi A, Arcana I (2016) Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser Mater Sci Eng

  123. Faradilla RF et al (2016) Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose 23(5):3023–3037

    Article  CAS  Google Scholar 

  124. Hirota M et al (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17(2): 279–288

  125. Kargarzadeh H et al (2017) Methods for extraction of nanocellulose from various sources. Handbook Nanocell Cellulose Nanocomp 1:1–51

    CAS  Google Scholar 

  126. Chen YW (2017) Isolation and characterization of nanocrystalline cellulose from oil palm biomass via transition metal salt catalyzed hydrolysis process/Chen You Wei. University of Malaya

  127. Kargarzadeh H et al (2018) Advances in cellulose nanomaterials. Cellulose 25(4):2151–2189

    Article  CAS  Google Scholar 

  128. Liu C et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym 151:716–724

    Article  CAS  Google Scholar 

  129. Zhang S et al (2017) Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films. ACS Appl Mater Interfaces 9(19):16426–16434

    Article  CAS  Google Scholar 

  130. Henriksson M et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43(8):3434–3441

    Article  CAS  Google Scholar 

  131. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    Article  CAS  Google Scholar 

  132. Kawee N, Lam NT, Sukyai P (2018) Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohyd Polym 179:394–401

    Article  CAS  Google Scholar 

  133. Yusra AI et al (2018) Controlling of green nanocellulose fiber properties produced by chemo-mechanical treatment process via SEM, TEM, AFM and image analyzer characterization. J Fund Appl Sci 10(1S):1–17

    Google Scholar 

  134. Lee S-Y et al (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15(1):50–55

    Article  Google Scholar 

  135. Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohyd Polym 90(4):1609–1613

    Article  CAS  Google Scholar 

  136. Wang Y et al (2017) Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind Crops Prod 104:237–241

    Article  CAS  Google Scholar 

  137. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohyd Res 346(1):76–85

    Article  CAS  Google Scholar 

  138. Zuluaga R et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592

    Article  CAS  Google Scholar 

  139. Oksman K et al (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35(1):146–152

    Article  CAS  Google Scholar 

  140. Adnan S et al (2018) Properties of paper incorporated with nanocellulose extracted using microbial hydrolysis assisted shear process. In: IOP conference series: materials science and engineering. IOP Publishing

  141. Zhuo X et al (2017) Nanocellulose isolation from Amorpha fruticosa by an enzyme-assisted pretreatment. Appl Environ Biotech 2(2):37–42

    Article  CAS  Google Scholar 

  142. Zhuo X et al (2017) Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn. ACS Sustain Chem Eng 5(5):4414–4420

    Article  CAS  Google Scholar 

  143. Li J et al (2014) Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohyd Polym 113:388–393

    Article  CAS  Google Scholar 

  144. Liu Q et al (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5(7):6183–6191

    Article  CAS  Google Scholar 

  145. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4):1086–1093

    Article  CAS  Google Scholar 

  146. Kalia S et al (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  147. Ferrer A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Biores Technol 125:249–255

    Article  CAS  Google Scholar 

  148. Mahdi Jafari S, He Y, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9(3): 475–485

  149. Karande V et al (2011) Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers Polym 12(3):399

    Article  CAS  Google Scholar 

  150. Carrasco F, Mutje P, Pelach M (1996) Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Sci Technol 30(4):227–236

    Article  CAS  Google Scholar 

  151. Roux J, Mayade T (1999) Modeling of the particle breakage kinetics in the wet mills for the paper industry. Powder Technol 105(1–3):237–242

    Article  CAS  Google Scholar 

  152. Chakraborty A et al (2007) Modeling energy consumption for the generation of microfibres from bleached kraft pulp fibres in a PFI mill. BioResources 2(2):210–222

    Article  CAS  Google Scholar 

  153. Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187

    Article  CAS  Google Scholar 

  154. Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    Article  CAS  Google Scholar 

  155. Kang T, Paulapuro H (2006) New mechanical treatment for chemical pulp. Proc Instit Mech Eng Part E: J Process Mech Eng 220(3):161–166

    Article  Google Scholar 

  156. Pereira B, Arantes V (2018) Nanocelluloses from sugarcane biomass. Advances in Sugarcane Biorefinery. Elsevier, pp 179–196

    Chapter  Google Scholar 

  157. Chen P et al (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157

    Article  CAS  Google Scholar 

  158. Frone AN et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6(1):487–512

    Article  CAS  Google Scholar 

  159. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG

  160. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: A review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  161. Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546

    Article  CAS  Google Scholar 

  162. Kuzina S et al (2013) Influence of radiolysis on the yield of nanocellulose from plant biomass. High Energy Chem 47(4):192–197

    Article  CAS  Google Scholar 

  163. Perrin L et al (2020) Interest of pickering emulsions for sustainable micro/nanocellulose in food and cosmetic applications. Polymers 12(10):2385

    Article  CAS  Google Scholar 

  164. Eslahi N et al (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60(1):144–170

    Article  CAS  Google Scholar 

  165. Liu W et al (2020) Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustain Chem Eng 8(20):7536–7562

    Article  CAS  Google Scholar 

  166. Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohyd Polym 85(3):506–513

    Article  CAS  Google Scholar 

  167. Shi Z et al (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2(3):1040–1046

    Article  CAS  Google Scholar 

  168. Shah N et al (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98(2):1585–1598

    Article  CAS  Google Scholar 

  169. Fernandes IdAA et al (2020) Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol

  170. Kubiak K et al (2014) Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose. J Biotechnol 176:18–19

    Article  CAS  Google Scholar 

  171. Torres F, Arroyo J, Troncoso O (2019) Bacterial cellulose nanocomposites: An all-nano type of material. Mater Sci Eng, C 98:1277–1293

    Article  CAS  Google Scholar 

  172. Lin S-P et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219

    Article  CAS  Google Scholar 

  173. Castro C et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1): 96–102

  174. Kim S et al Gluconacetobacter sp. gel_SEA623–2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi J Biologic Sci 24(2): 314–319

  175. Du R et al (2018) Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohyd Polym 194:200–207

    Article  CAS  Google Scholar 

  176. Škraban J et al (2018) Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007) Yamada et al., 2013 as a later heterotypic synonym of Komagataeibacter hansenii (Gosselé et al. 1983) Yamada et al., 2013. System Appl Microbiol 41(6): 581–592

  177. Numata Y et al (2019) Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus. Food Hydrocoll 92:233–239

    Article  CAS  Google Scholar 

  178. Wasim M et al Preparation and characterization of copper/zinc nanoparticles-loaded bacterial cellulose for electromagnetic interference shielding. J Industr Tex 0(0): 1528083720921531

  179. Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohyd Polym 219:63–76

    Article  CAS  Google Scholar 

  180. Wang SS et al (2018) Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polym 10(9): 963

  181. Islam MU et al (2017) Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 102:1166–1173

    Article  Google Scholar 

  182. Wu S-C, Li M-H (2015) Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J Biosci Bioeng 120(4):444–449

    Article  CAS  Google Scholar 

  183. Cheng HP et al (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(2):125–132

    Article  CAS  Google Scholar 

  184. Abdelraof M et al (2019) Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int J Biol Macromol 138:975–985

    Article  CAS  Google Scholar 

  185. Ye J et al (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Biores Technol 274:518–524

    Article  CAS  Google Scholar 

  186. Żywicka A et al (2018) Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohyd Polym 199:294–303

    Article  Google Scholar 

  187. Salari M et al (2019) Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int J Biol Macromol 122:280–288

    Article  CAS  Google Scholar 

  188. Suwannarat Y et al (2017) Production of bacterial cellulose from acetobacter xylinum by using rambutan juice as a carbon source. J Agric Tech 13(7.1): 1361–1369

  189. Dhar P, Etula J, Bankar SB (2019) In situ bioprocessing of bacterial cellulose with graphene: percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Appl Bio Mater 2(9):4052–4066

    Article  CAS  Google Scholar 

  190. Costa R, Santos L (2017) Delivery systems for cosmetics-From manufacturing to the skin of natural antioxidants. Powder Technol 322:402–416

    Article  CAS  Google Scholar 

  191. Dubey S, Singh J, Singh R (2018) Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Biores Technol 247:73–80

    Article  CAS  Google Scholar 

  192. Lokensgard E (2010) Industrial plastics: theory and applications. 5th. New York: Thomson Delmar Learning

  193. Ashter SA (2017) Technology and applications of polymers derived from biomass. William Andrew

  194. Loo MML, Hashim R, Leh CP (2012) Recycling of valueless paper dust to a low grade cellulose acetate: effect of pretreatments on acetylation. BioResources 7(1):1068–1083

    Google Scholar 

  195. Ouarga A et al (2020) Development of anti-corrosion coating based on phosphorylated ethyl cellulose microcapsules. Prog Organ Coat 148: 105885

  196. Cellulosics D (2005) ETHOCEL™: Ethylcellulose polymers technical handbook. TDC Company (Ed.), Dow Cellulosics, p 28

  197. Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Cellulose-medical, pharmaceutical and electronic applications. IntechOpen

  198. Chan LW, Ong KT, Heng PWS (2005) Novel film modifiers to alter the physical properties of composite ethylcellulose films. Pharm Res 22(3):476–489

    Article  CAS  Google Scholar 

  199. Rodríguez-Hernández A et al (2020) Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. Carbohyd Polym 252: 117171

  200. Koch W (1937) Properties and uses of ethylcellulose. Ind Eng Chem 29(6):687–690

    Article  CAS  Google Scholar 

  201. Wyman C et al (2005) Polysaccharides: structural diversity and functional versatility. Dekker, New York, pp 995–1033

    Google Scholar 

  202. Adeleke OA (2019) Premium ethylcellulose polymer based architectures at work in drug delivery. Int J Pharmaceut 1: 100023

  203. AIACHE JM, Gauthier P, Aiache S (1992) New gelification method for vegetable oils I: cosmetic application. Int J Cosmetic Sci 14(5): 228–234

  204. Zetzl AK, Marangoni AG, Barbut S (2012) Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct 3(3):327–337

    Article  CAS  Google Scholar 

  205. Rekhi GS, Jambhekar SS (1995) Ethylcellulose-a polymer review. Drug Dev Ind Pharm 21(1):61–77

    Article  CAS  Google Scholar 

  206. Davidovich-Pinhas M, Barbut S, Marangoni A (2014) Physical structure and thermal behavior of ethylcellulose. Cellulose 21(5):3243–3255

    Article  CAS  Google Scholar 

  207. Pérez-Madrigal MM, Edo MG, Alemán C (2016) Powering the future: application of cellulose-based materials for supercapacitors. Green Chem 18(22):5930–5956

    Article  Google Scholar 

  208. Wasim M et al Development of bacterial cellulose nanocomposites: an overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Industri Tex 0(0): 1528083720977201

  209. Li YY et al (2018) Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci 2018

  210. Liu D et al (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20(6):2981–2989

    Article  CAS  Google Scholar 

  211. Niu X et al (2018) Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromol 19(12):4565–4575

    Article  CAS  Google Scholar 

  212. Chen W et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47(8):2837–2872

    Article  CAS  Google Scholar 

  213. Largeot C et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731

    Article  CAS  Google Scholar 

  214. Lu X et al (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7(7):2160–2181

    Article  Google Scholar 

  215. Zhang X et al (2013) Solid-state, flexible, high strength paper-based supercapacitors. J Mater Chem A 1(19):5835–5839

    Article  CAS  Google Scholar 

  216. Gao K et al (2013) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67

    Article  CAS  Google Scholar 

  217. Liu Z et al (2019) Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 13(5):5703–5711

    Article  CAS  Google Scholar 

  218. Zhang J et al (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4(8):4417–4423

    Article  CAS  Google Scholar 

  219. Tian X et al (2017) Synthesis of micro-and meso-porous carbon derived from cellulose as an electrode material for supercapacitors. Electrochim Acta 241:170–178

    Article  CAS  Google Scholar 

  220. Chen Z et al (2017) Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application. Carbohyd Polym 170:107–116

    Article  CAS  Google Scholar 

  221. Xiao S et al (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohyd Polym 119:202–209

    Article  CAS  Google Scholar 

  222. Zhou J, Hsieh Y-L (2018) Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl Mater Interfaces 10(33):27902–27910

    Article  CAS  Google Scholar 

  223. Sudhakar YN, Krishna Bhat D, Selvakumar M (2016) Ionic conductivity and dielectric studies of acid doped cellulose acetate propionate solid electrolyte for supercapacitor. Poly Eng Sci 56(2): 196–203

  224. Su H et al (2017) Waste to wealth: A sustainable and flexible supercapacitor based on office waste paper electrodes. J Electroanal Chem 786:28–34

    Article  CAS  Google Scholar 

  225. Hall PJ et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3(9):1238–1251

    Article  CAS  Google Scholar 

  226. Yan J et al (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1300816

    Article  Google Scholar 

  227. Gidwani M, Bhagwani A, Rohra N (2014) Supercapacitors: the near Future of Batteries. Int J Eng Invent 4(5):22–32

    Google Scholar 

  228. Nishide H, Oyaizu K (2008) Toward flexible batteries. Science 319(5864):737–738

    Article  CAS  Google Scholar 

  229. Gottis S et al (2014) Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect. ACS Appl Mater Interfaces 6(14):10870–10876

    Article  CAS  Google Scholar 

  230. Aradilla D, Estrany F, Alemán C (2011) Symmetric supercapacitors based on multilayers of conducting polymers. J Physic Chem C 115(16):8430–8438

    Article  CAS  Google Scholar 

  231. Sen S et al (2016) In situ measurement of voltage-induced stress in conducting polymers with redox-active dopants. ACS Appl Mater Interfaces 8(36):24168–24176

    Article  CAS  Google Scholar 

  232. Song Z, Zhan H, Zhou Y (2009) Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem Commun 4:448–450

    Article  Google Scholar 

  233. Dong L et al (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248

    Article  CAS  Google Scholar 

  234. Hu L et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106(51):21490–21494

    Article  CAS  Google Scholar 

  235. Zhang X et al (2019) In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochim Acta 301:55–62

    Article  CAS  Google Scholar 

  236. Zhai S et al (2016) Textile energy storage: structural design concepts, material selection and future perspectives. Energy Storage Mater 3:123–139

    Article  Google Scholar 

  237. Hu L et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714

    Article  CAS  Google Scholar 

  238. Liu W-W et al (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22(33):17245–17253

    Article  CAS  Google Scholar 

  239. Kim J et al (2019) A flexible cable-shaped supercapacitor based on carbon fibers coated with graphene flakes for wearable electronic applications. Micro Nano Syst Lett 7(1):4

    Article  Google Scholar 

  240. Kang YJ et al (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotech 23(6): 065401

  241. Sevilla M, Ferrero G, Fuertes A (2016) Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Mater 5:33–42

    Article  Google Scholar 

  242. Zheng G et al (2011) Paper supercapacitors by a solvent-free drawing method. Energy Environ Sci 4(9):3368–3373

    Article  CAS  Google Scholar 

  243. Feng J-X et al (2020) Correction: Flexible symmetrical planar supercapacitors based on multi-layered MnO2/Ni/graphite/paper electrodes with high-efficient electrochemical energy storage. J Mater Chem A 8(34):17826–17826

    Article  CAS  Google Scholar 

  244. Chen W, Rakhi R, Alshareef HN (2012) High energy density supercapacitors using macroporous kitchen sponges. J Mater Chem 22(29):14394–14402

    Article  CAS  Google Scholar 

  245. Kang YJ et al (2010) Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synth Met 160(23–24):2510–2514

    Article  CAS  Google Scholar 

  246. Qian J et al (2015) Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. Angew Chem Int Ed 54(23):6800–6803

    Article  CAS  Google Scholar 

  247. Kim J et al (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3(1):1600260

    Article  Google Scholar 

  248. Gong S, Cheng W (2017) Toward soft skin-like wearable and implantable energy devices. Adv Energy Mater 7(23):1700648

    Article  Google Scholar 

  249. Colangelo G et al (2017) Cooling of electronic devices: Nanofluids contribution. Appl Therm Eng 127:421–435

    Article  CAS  Google Scholar 

  250. Kang YJ et al (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7):6400–6406

    Article  CAS  Google Scholar 

  251. Lee Y-H et al (2013) Wearable textile battery rechargeable by solar energy. Nano Lett 13(11):5753–5761

    Article  CAS  Google Scholar 

  252. Khan MO (2012) Thermally conductive polymer composites for electronic packaging applications

  253. Guo W et al (2016) Recent development of transparent conducting Oxide-Free flexible Thin-Film solar cells. Adv Func Mater 26(48):8855–8884

    Article  CAS  Google Scholar 

  254. Nogi M et al (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598

    Article  CAS  Google Scholar 

  255. Iwamoto S et al (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112

    Article  CAS  Google Scholar 

  256. Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromol 16(7):2220–2227

    Article  CAS  Google Scholar 

  257. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824

    Article  CAS  Google Scholar 

  258. Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  CAS  Google Scholar 

  259. Ni Z et al (2008) Raman spectroscopy and imaging of graphene. Nano Res 1(4):273–291

    Article  CAS  Google Scholar 

  260. Gojny FH et al (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370(5–6):820–824

    Article  CAS  Google Scholar 

  261. Fang H, Bai S-L, Wong CP (2018) Microstructure engineering of graphene towards highly thermal conductive composites. Compos A Appl Sci Manuf 112:216–238

    Article  CAS  Google Scholar 

  262. Weng Z et al (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922

    Article  CAS  Google Scholar 

  263. Zheng G et al (2011) Energy Environ Sci 4:3368

    Article  CAS  Google Scholar 

  264. Morales-Narváez E et al (2015) Nanopaper as an optical sensing platform. ACS Nano 9(7):7296–7305

    Article  Google Scholar 

  265. Shi Z et al (2009) Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers. Appl Phy Lett 95(22): 224104

  266. Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Curr Opin Colloid Interf Sci 29:68–75

    Article  Google Scholar 

  267. Fang Z et al (2014) Highly transparent paper with tunable haze for green electronics. Energy Environ Sci 7(10):3313–3319

    Article  CAS  Google Scholar 

  268. Ha D et al (2015) Advanced broadband antireflection coatings based on cellulose microfiber paper. IEEE J Photovolt 5(2):577–583

    Article  Google Scholar 

  269. Svagan AJ et al (2014) Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy. ACS Nano 8(8):8198–8207

    Article  CAS  Google Scholar 

  270. Shimazaki Y et al (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromol 8(9):2976–2978

    Article  CAS  Google Scholar 

  271. Martoïa F et al (2016) Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391

    Article  Google Scholar 

  272. Fang Z et al. (2014) Development, application and commercialization of transparent paper. Trans Mater Res 1(1): 015004

  273. Nie Z et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483

    Article  CAS  Google Scholar 

  274. Yao Y et al (2016) Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ Sci 9(7):2278–2285

    Article  CAS  Google Scholar 

  275. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  276. Zhu H et al (2016) Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10(1):1369–1377

    Article  CAS  Google Scholar 

  277. Sehaqui H et al (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832

    Article  CAS  Google Scholar 

  278. Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15(2):297–301

    Article  CAS  Google Scholar 

  279. Zhou Y et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3(1):1–5

    Google Scholar 

  280. Cao X et al (2011) Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform. Curr Sci 1172–1176

  281. Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromol 11(4):1060–1066

    Article  CAS  Google Scholar 

  282. Chen J et al (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Func Mater 27(5):1604754

    Article  Google Scholar 

  283. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci 105(50):19606–19611

    Article  CAS  Google Scholar 

  284. Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336

    Article  CAS  Google Scholar 

  285. Zhang Y et al (2020) Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polym 234: 115888

  286. Huang Q, Wang D, Zheng Z (2016) Textile-based electrochemical energy storage devices. Adv Energy Mater 6(22):1600783

    Article  Google Scholar 

  287. Wang X et al (2014) Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chem 126(7):1880–1884

    Article  Google Scholar 

  288. Simon P et al (2008) Materials for electrochemical capacitors nature materials. Prop Appl Supercapacit State-of-the-art to Fut Trends 7(1):45–55

    Google Scholar 

  289. Dubal DP et al (2014) Supercapacitors based on flexible substrates: an overview. Energ Technol 2(4):325–341

    Article  Google Scholar 

  290. Wu C et al (2019) Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon 150:311–318

    Article  CAS  Google Scholar 

  291. Yuan L et al (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476

    Article  CAS  Google Scholar 

  292. Li Y et al (1994) Behavior of the high temperature conductivity of polypyrrole nitrate films. Polym J 26(5):535–538

    Article  CAS  Google Scholar 

  293. Wang K et al (2013) The thermal analysis on the stackable supercapacitor. Energy 59:440–444

    Article  Google Scholar 

  294. Pushparaj VL et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577

    Article  CAS  Google Scholar 

  295. Chen G et al (2018) Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 127:218–227

    Article  CAS  Google Scholar 

  296. Lv Y et al (2017) A cellulose-based hybrid 2D material aerogel for a flexible all-solid-state supercapacitor with high specific capacitance. RSC Adv 7(69):43512–43520

    Article  CAS  Google Scholar 

  297. Zheng Q et al (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7(5):3263–3271

    Article  CAS  Google Scholar 

  298. Yang Y, Chen C, Li D (2018) Electrodes based on cellulose nanofibers/carbon nanotubes networks, polyaniline nanowires and carbon cloth for supercapacitors. Mater Res Exp 6(3): 035008

  299. Chen LF et al (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Func Mater 24(32):5104–5111

    Article  CAS  Google Scholar 

  300. Liu K-K et al (2018) Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv 8(55):31296–31302

    Article  CAS  Google Scholar 

  301. Zhao Z et al (2015) Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J Mater Chem A 3(29):15049–15056

    Article  CAS  Google Scholar 

  302. Choi C et al (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5(1):5–19

    Article  Google Scholar 

  303. Abeywardana DBW, Hredzak B, Agelidis VG (2015) Battery-supercapacitor hybrid energy storage system with reduced low frequency input current ripple. in 2015 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE

  304. Rakhi R et al (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567

    Article  CAS  Google Scholar 

  305. Ko Y et al (2017) Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  306. Wang H et al (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Physic Chem C 116(24):13013–13019

    Article  CAS  Google Scholar 

  307. Gui Z et al (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037–6046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51778098) and Dalian Science & Technology Innovation Fund (2018J12SN066), China. In addition, this work is grateful to training of young academic scholars, as well as for Key Laboratory of New Materials and Modification of Liaoning Province, School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Shi or Jingxiao Liu.

Ethics declarations

Conflicts of interest

The authors declared that they don’t have any conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasim, M., Shi, F., Liu, J. et al. Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices. J Mater Sci 56, 14448–14486 (2021). https://doi.org/10.1007/s10853-021-06215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06215-3

Navigation