Abstract
Thermal performance of Al nanocomposites is of significance for broad applications. In this study, we successfully fabricated Al–TiC, Al–ZrB2, and Al–TiB2 nanocomposites via a novel in situ molten-salt-assisted method and systematically investigated their thermal properties, including thermal diffusivity, heat capacity, and thermal conductivity. Different contributions from electron and phonon have been semi-quantitatively decoupled for interfacial thermal transport in these Al-based nanocomposites. Then, the interfacial thermal conductance between aluminum and the electrically conductive TiC, ZrB2, and TiB2 nanoparticles was quantitatively studied and compared with existing models. An engineering model of the interfacial thermal conductance has been proposed and validated. It was confirmed that a higher interfacial separation energy and more effective interfacial bonding by better wettability can be conducive to a higher interfacial thermal transport.
Graphical abstract

This is a preview of subscription content, access via your institution.











References
Chen L-Y, Xu J-Q, Choi H et al (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543. https://doi.org/10.1038/nature16445
Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun 10:98. https://doi.org/10.1038/s41467-018-07989-y
Pan S, Saso T, Yu N et al (2020) New study on tribological performance of AA7075-TiB2 nanocomposites. Tribol Int 152:106565. https://doi.org/10.1016/j.triboint.2020.106565
Pan S, Guan Z, Yao G et al (2019) Study on electrical behaviour of copper and its alloys containing dispersed nanoparticles. Curr Appl Phys. https://doi.org/10.1016/j.cap.2019.01.016
Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44:303–308. https://doi.org/10.1016/S0026-2714(03)00215-4
Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80. https://doi.org/10.1016/j.applthermaleng.2012.04.063
Kawai C (2001) Effect of interfacial reaction on the thermal conductivity of Al–SiC composites with SiC dispersions. J Am Ceram Soc 84:896–898. https://doi.org/10.1111/j.1151-2916.2001.tb00764.x
Hong Y, Li L, Cheng Zeng X, Zhang J (2015) Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering. Nanoscale 7:6286–6294. https://doi.org/10.1039/C5NR00564G
Cao H, Xiong D-B, Tan Z et al (2019) Thermal properties of in situ grown graphene reinforced copper matrix laminated composites. J Alloy Compd 771:228–237. https://doi.org/10.1016/j.jallcom.2018.08.274
Kang JS, Li M, Wu H et al (2018) Experimental observation of high thermal conductivity in boron arsenide. Science 361:575–578.
Guan Z, Hwang I, Pan S, Li X (2018) Scalable Manufacturing of AgCu40(wt %)-WC Nanocomposite Microwires. J Micro Nano-Manuf 6(3):031008. https://doi.org/10.1115/1.4040558
Gobalakrishnan B, Lakshminarayanan PR, Varahamoorthi R (2018) Mechanical properties of Al 6061/TiB2 in-situ formed metal matrix composites. https://www.ingentaconnect.com/contentone/asp/jamr/2018/00000013/00000001/art00019. Accessed 20 Jul 2018
Gasparov VA, Kulakov MP, Sidorov NS et al (2004) On electron transport in ZrB12, ZrB2, and MgB2 in normal state. Jetp Lett 80:330–334. https://doi.org/10.1134/1.1825116
Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, Amsterdam
Kim J, Kang S (2012) Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J Alloy Compd 528:20–27. https://doi.org/10.1016/j.jallcom.2012.02.124
Pan S, Yao G, Sokoluk M et al (2019) Enhanced thermal stability in Cu-40 wt% Zn/WC nanocomposite. Mater Des 180:107964. https://doi.org/10.1016/j.matdes.2019.107964
Hasselman DPH, Donaldson KY, Geiger AL (1992) Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J American Ceramic Society 75:3137–3140. https://doi.org/10.1111/j.1151-2916.1992.tb04400.x
Pan S, Yuan J, Zhang P et al (2020) Effect of electron concentration on electrical conductivity in in situ Al–TiB2 nanocomposites. Appl Phys Lett 116:014102. https://doi.org/10.1063/1.5129817
Ma C, Zhao J, Cao C et al (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part i: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121001–121007. https://doi.org/10.1115/1.4033392
Pan S, Guan Z, Li X (2021) Unusual thermal performance in Cu-60Ag by WC nanoparticles. Mater Sci Eng, B 265:115010. https://doi.org/10.1016/j.mseb.2020.115010
Kida M, Weber L, Monachon C, Mortensen A (2011) Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites. J Appl Phys 109:064907. https://doi.org/10.1063/1.3553870
Bai G, Wang L, Zhang Y et al (2019) Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater Charact 152:265–275. https://doi.org/10.1016/j.matchar.2019.04.015
Guo L, Hodson SL, Fisher TS, Xu X (2012) Heat transfer across metal-dielectric interfaces during ultrafast-laser heating. J Heat Transfer 134:042402–042402–042405. https://doi.org/10.1115/1.4005255
Gao F, Qu J, Yao M (2011) Interfacial thermal resistance between metallic carbon nanotube and Cu substrate. J Appl Phys 110:124314. https://doi.org/10.1063/1.3670011
Hopkins PE (2013) Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. In: International Scholarly Research Notices. https://www.hindawi.com/journals/isrn/2013/682586/abs/. Accessed 24 Jun 2019
Jagannadham K (2012) Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall and Materi Trans B 43:316–324. https://doi.org/10.1007/s11663-011-9597-z
Shenogina N, Godawat R, Keblinski P, Garde S (2009) How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys Rev Lett 102:156101. https://doi.org/10.1103/PhysRevLett.102.156101
Tyson WR, Miller WA (1977) Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci 62:267–276. https://doi.org/10.1016/0039-6028(77)90442-3
Yuan J, Yao G, Pan S et al (2021) Size control of in-situ synthesized TiB2 particles in molten aluminum. Metall Mater Trans A 52:2657–2666. https://doi.org/10.1007/s11661-021-06260-2
Pan S, Yao G, Yuan J, Li X (2019) Electrical performance of bulk Al–ZrB2 nanocomposites from 2 K to 300 K. In: Srivatsan TS, Gupta M (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. Springer International Publishing, Cham, pp 63–70
Cao C, Ling H, Murali N, Li X (2019) In-situ molten salt reaction and incorporation of small (10 nm) TiC nanoparticles into Al. Materialia 7:100425. https://doi.org/10.1016/j.mtla.2019.100425
Dong B-X, Yang H-Y, Qiu F et al (2019) Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Mater Des 181:107951. https://doi.org/10.1016/j.matdes.2019.107951
Birol Y (2008) In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium. J Alloy Compd 454:110–117. https://doi.org/10.1016/j.jallcom.2006.12.016
Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684. https://doi.org/10.1063/1.1728417
Kim SI, Lee KH, Mun HA et al (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114. https://doi.org/10.1126/science.aaa4166
Deligoz E, Colakoglu K, Ciftci YO (2009) Lattice dynamical properties of ScB2, TiB2, and V B2 compounds. Solid State Commun 149:1843–1848. https://doi.org/10.1016/j.ssc.2009.07.010
Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2008) Thermophysical properties of ZrB2 and ZrB2–SiC ceramics. J Am Ceram Soc 91:1405–1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x
Krikorian OH (1971) Estimation of heat capacities and other thermodynamic properties of refractory borides. No. UCRL-51043. California University, Lawrence Radiation Lab, Livermore. https://www.osti.gov/servlets/purl/4722189
Fuchs G, Drechsler S-L, Müller K-H et al (2003) A comparative study of MgB2 and other diborides. J Low Temp Phys 131:1159–1163. https://doi.org/10.1023/A:1023473731568
Shen P, Fujii H, Nogi K (2009) Wettability of some refractory materials by molten SiO2–MnO–TiO2–FeOx slag. Mater Chem Phys 114:681–686. https://doi.org/10.1016/j.matchemphys.2008.10.021
Acknowledgements
We sincerely thank MetaLi L.L.C for materials and equipment support. The proofreading from Mr. Narayanan Murali greatly improves the quality this manuscript. We would also like to thank Dr. Maximilian Sokoluk, Dr. Zeyi Guan and Dr. Gongcheng Yao for their useful comments and insightful suggestion. Besides, we also appreciate the characterization assistance from Prof. Yu Huang’s lab and Ph.D. student Haotian Liu. The first author would like to publish this paper in memory of his grandma, who passed away recently and whose characteristics and personalities have influenced him greatly.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest. They declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Handling Editor: Naiqin Zhao.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pan, S., Yuan, J., Zheng, T. et al. Interfacial thermal conductance of in situ aluminum-matrix nanocomposites. J Mater Sci 56, 13646–13658 (2021). https://doi.org/10.1007/s10853-021-06176-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-021-06176-7