Skip to main content

Interfacial thermal conductance of in situ aluminum-matrix nanocomposites

Abstract

Thermal performance of Al nanocomposites is of significance for broad applications. In this study, we successfully fabricated Al–TiC, Al–ZrB2, and Al–TiB2 nanocomposites via a novel in situ molten-salt-assisted method and systematically investigated their thermal properties, including thermal diffusivity, heat capacity, and thermal conductivity. Different contributions from electron and phonon have been semi-quantitatively decoupled for interfacial thermal transport in these Al-based nanocomposites. Then, the interfacial thermal conductance between aluminum and the electrically conductive TiC, ZrB2, and TiB2 nanoparticles was quantitatively studied and compared with existing models. An engineering model of the interfacial thermal conductance has been proposed and validated. It was confirmed that a higher interfacial separation energy and more effective interfacial bonding by better wettability can be conducive to a higher interfacial thermal transport.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Chen L-Y, Xu J-Q, Choi H et al (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543. https://doi.org/10.1038/nature16445

    Article  CAS  Google Scholar 

  2. Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun 10:98. https://doi.org/10.1038/s41467-018-07989-y

    Article  CAS  Google Scholar 

  3. Pan S, Saso T, Yu N et al (2020) New study on tribological performance of AA7075-TiB2 nanocomposites. Tribol Int 152:106565. https://doi.org/10.1016/j.triboint.2020.106565

    Article  CAS  Google Scholar 

  4. Pan S, Guan Z, Yao G et al (2019) Study on electrical behaviour of copper and its alloys containing dispersed nanoparticles. Curr Appl Phys. https://doi.org/10.1016/j.cap.2019.01.016

    Article  Google Scholar 

  5. Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44:303–308. https://doi.org/10.1016/S0026-2714(03)00215-4

    Article  CAS  Google Scholar 

  6. Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80. https://doi.org/10.1016/j.applthermaleng.2012.04.063

    Article  CAS  Google Scholar 

  7. Kawai C (2001) Effect of interfacial reaction on the thermal conductivity of Al–SiC composites with SiC dispersions. J Am Ceram Soc 84:896–898. https://doi.org/10.1111/j.1151-2916.2001.tb00764.x

    Article  CAS  Google Scholar 

  8. Hong Y, Li L, Cheng Zeng X, Zhang J (2015) Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering. Nanoscale 7:6286–6294. https://doi.org/10.1039/C5NR00564G

    Article  CAS  Google Scholar 

  9. Cao H, Xiong D-B, Tan Z et al (2019) Thermal properties of in situ grown graphene reinforced copper matrix laminated composites. J Alloy Compd 771:228–237. https://doi.org/10.1016/j.jallcom.2018.08.274

    Article  CAS  Google Scholar 

  10. Kang JS, Li M, Wu H et al (2018) Experimental observation of high thermal conductivity in boron arsenide. Science 361:575–578.

  11. Guan Z, Hwang I, Pan S, Li X (2018) Scalable Manufacturing of AgCu40(wt %)-WC Nanocomposite Microwires. J Micro Nano-Manuf 6(3):031008. https://doi.org/10.1115/1.4040558

  12. Gobalakrishnan B, Lakshminarayanan PR, Varahamoorthi R (2018) Mechanical properties of Al 6061/TiB2 in-situ formed metal matrix composites. https://www.ingentaconnect.com/contentone/asp/jamr/2018/00000013/00000001/art00019. Accessed 20 Jul 2018

  13. Gasparov VA, Kulakov MP, Sidorov NS et al (2004) On electron transport in ZrB12, ZrB2, and MgB2 in normal state. Jetp Lett 80:330–334. https://doi.org/10.1134/1.1825116

    Article  CAS  Google Scholar 

  14. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, Amsterdam

    Google Scholar 

  15. Kim J, Kang S (2012) Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J Alloy Compd 528:20–27. https://doi.org/10.1016/j.jallcom.2012.02.124

    Article  CAS  Google Scholar 

  16. Pan S, Yao G, Sokoluk M et al (2019) Enhanced thermal stability in Cu-40 wt% Zn/WC nanocomposite. Mater Des 180:107964. https://doi.org/10.1016/j.matdes.2019.107964

    Article  CAS  Google Scholar 

  17. Hasselman DPH, Donaldson KY, Geiger AL (1992) Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J American Ceramic Society 75:3137–3140. https://doi.org/10.1111/j.1151-2916.1992.tb04400.x

    Article  CAS  Google Scholar 

  18. Pan S, Yuan J, Zhang P et al (2020) Effect of electron concentration on electrical conductivity in in situ Al–TiB2 nanocomposites. Appl Phys Lett 116:014102. https://doi.org/10.1063/1.5129817

    Article  CAS  Google Scholar 

  19. Ma C, Zhao J, Cao C et al (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part i: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121001–121007. https://doi.org/10.1115/1.4033392

    Article  Google Scholar 

  20. Pan S, Guan Z, Li X (2021) Unusual thermal performance in Cu-60Ag by WC nanoparticles. Mater Sci Eng, B 265:115010. https://doi.org/10.1016/j.mseb.2020.115010

    Article  CAS  Google Scholar 

  21. Kida M, Weber L, Monachon C, Mortensen A (2011) Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites. J Appl Phys 109:064907. https://doi.org/10.1063/1.3553870

    Article  CAS  Google Scholar 

  22. Bai G, Wang L, Zhang Y et al (2019) Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater Charact 152:265–275. https://doi.org/10.1016/j.matchar.2019.04.015

    Article  CAS  Google Scholar 

  23. Guo L, Hodson SL, Fisher TS, Xu X (2012) Heat transfer across metal-dielectric interfaces during ultrafast-laser heating. J Heat Transfer 134:042402–042402–042405. https://doi.org/10.1115/1.4005255

    Article  CAS  Google Scholar 

  24. Gao F, Qu J, Yao M (2011) Interfacial thermal resistance between metallic carbon nanotube and Cu substrate. J Appl Phys 110:124314. https://doi.org/10.1063/1.3670011

    Article  CAS  Google Scholar 

  25. Hopkins PE (2013) Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. In: International Scholarly Research Notices. https://www.hindawi.com/journals/isrn/2013/682586/abs/. Accessed 24 Jun 2019

  26. Jagannadham K (2012) Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall and Materi Trans B 43:316–324. https://doi.org/10.1007/s11663-011-9597-z

    Article  CAS  Google Scholar 

  27. Shenogina N, Godawat R, Keblinski P, Garde S (2009) How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys Rev Lett 102:156101. https://doi.org/10.1103/PhysRevLett.102.156101

    Article  CAS  Google Scholar 

  28. Tyson WR, Miller WA (1977) Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci 62:267–276. https://doi.org/10.1016/0039-6028(77)90442-3

    Article  CAS  Google Scholar 

  29. Yuan J, Yao G, Pan S et al (2021) Size control of in-situ synthesized TiB2 particles in molten aluminum. Metall Mater Trans A 52:2657–2666. https://doi.org/10.1007/s11661-021-06260-2

  30. Pan S, Yao G, Yuan J, Li X (2019) Electrical performance of bulk Al–ZrB2 nanocomposites from 2 K to 300 K. In: Srivatsan TS, Gupta M (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. Springer International Publishing, Cham, pp 63–70

    Chapter  Google Scholar 

  31. Cao C, Ling H, Murali N, Li X (2019) In-situ molten salt reaction and incorporation of small (10 nm) TiC nanoparticles into Al. Materialia 7:100425. https://doi.org/10.1016/j.mtla.2019.100425

    Article  CAS  Google Scholar 

  32. Dong B-X, Yang H-Y, Qiu F et al (2019) Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Mater Des 181:107951. https://doi.org/10.1016/j.matdes.2019.107951

    Article  CAS  Google Scholar 

  33. Birol Y (2008) In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium. J Alloy Compd 454:110–117. https://doi.org/10.1016/j.jallcom.2006.12.016

    Article  CAS  Google Scholar 

  34. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684. https://doi.org/10.1063/1.1728417

    Article  CAS  Google Scholar 

  35. Kim SI, Lee KH, Mun HA et al (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348:109–114. https://doi.org/10.1126/science.aaa4166

    Article  CAS  Google Scholar 

  36. Deligoz E, Colakoglu K, Ciftci YO (2009) Lattice dynamical properties of ScB2, TiB2, and V B2 compounds. Solid State Commun 149:1843–1848. https://doi.org/10.1016/j.ssc.2009.07.010

    Article  CAS  Google Scholar 

  37. Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2008) Thermophysical properties of ZrB2 and ZrB2–SiC ceramics. J Am Ceram Soc 91:1405–1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x

    Article  CAS  Google Scholar 

  38. Krikorian OH (1971) Estimation of heat capacities and other thermodynamic properties of refractory borides. No. UCRL-51043. California University, Lawrence Radiation Lab, Livermore. https://www.osti.gov/servlets/purl/4722189

  39. Fuchs G, Drechsler S-L, Müller K-H et al (2003) A comparative study of MgB2 and other diborides. J Low Temp Phys 131:1159–1163. https://doi.org/10.1023/A:1023473731568

    Article  CAS  Google Scholar 

  40. Shen P, Fujii H, Nogi K (2009) Wettability of some refractory materials by molten SiO2–MnO–TiO2–FeOx slag. Mater Chem Phys 114:681–686. https://doi.org/10.1016/j.matchemphys.2008.10.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank MetaLi L.L.C for materials and equipment support. The proofreading from Mr. Narayanan Murali greatly improves the quality this manuscript. We would also like to thank Dr. Maximilian Sokoluk, Dr. Zeyi Guan and Dr. Gongcheng Yao for their useful comments and insightful suggestion. Besides, we also appreciate the characterization assistance from Prof. Yu Huang’s lab and Ph.D. student Haotian Liu. The first author would like to publish this paper in memory of his grandma, who passed away recently and whose characteristics and personalities have influenced him greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. They declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Yuan, J., Zheng, T. et al. Interfacial thermal conductance of in situ aluminum-matrix nanocomposites. J Mater Sci 56, 13646–13658 (2021). https://doi.org/10.1007/s10853-021-06176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06176-7