Skip to main content
Log in

ZnO@zeolitic imidazolate frameworks derived porous hybrid hollow carbon shell as an efficient electrocatalyst for oxygen reduction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing reasonable MOFs-derived carbon materials to further effectively improve the catalytic activity toward ORR in the practical application of fuel cells is very necessary but remains a great challenge. Herein, a new facile yet robust strategy, self-sacrifice template approach combined with a variety of MOFs, to achieve core–shell ZnO@zeolitic imidazolate frameworks precursor (ZnO@ZIF-8@ZIF-67) is developed. Subsequently, the porous hybrid hollow carbon shell (Zn/Co-NC) can be obtained by calcinating the precursor. Impressively, the Zn/Co-NC-800 prepared by pyrolysis at 800 °C manifests excellent ORR performances with a positive onset potential of 1.03 V (vs. reversible hydrogen electrode) (vs. RHE), a more positive half-wave potential at 0.856 V (vs. RHE, a positive shift of 28 mV compared with the Pt/C) and 4-electron pathway (n = 3.80). Also, it performs higher long-term stability (only a 7.9% decay of initial current density after 20000 s) and better methanol tolerance in comparison with the traditional Pt/C in alkaline media. In our current work, the synthesis strategy of the self-sacrificing template combined with ZIFs opens up a new route for the preparation of highly efficient non-precious metal electrocatalysts for ORR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wei PJ, Yu GQ, Naruta Y, Liu JG (2014) Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew Chem Int Edit 53:6659–6663. https://doi.org/10.1002/anie.201403133

    Article  CAS  Google Scholar 

  2. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from Polyaniline, Iron, and Cobalt. Science 332:443–447. https://doi.org/10.1126/science.1200832

    Article  CAS  Google Scholar 

  3. Zhang Y, Zhuang XD, Su YZ, Zhang F, Feng XL (2014) Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. J Mater Chem A 2:7742–7746. https://doi.org/10.1039/c4ta00814f

    Article  CAS  Google Scholar 

  4. Zhang JT, Zhao ZH, Xia ZH, Dai LM (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. https://doi.org/10.1038/Nnano.2015.48

    Article  CAS  Google Scholar 

  5. Jiang WJ, Gu L, Li L et al (2016) Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N(x). J Am Chem Soc 138:3570–3578. https://doi.org/10.1021/jacs.6b00757

    Article  CAS  Google Scholar 

  6. Li Q, Cao R, Cho J, Wu G (2014) Nanocarbon electrocatalysts for oxygen reduction in alkaline media for advanced energy conversion and storage. Adv Energy Mater 4:1301415. https://doi.org/10.1002/aenm.201301415

    Article  CAS  Google Scholar 

  7. Liang YY, Wang HL, Diao P et al (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134:15849–15857. https://doi.org/10.1021/ja305623m

    Article  CAS  Google Scholar 

  8. Chang HY, Lee KY (2015) Characteristics of nitrogen-doped carbon films grown by sputtering as potential cathode catalysts for oxygen reduction reaction. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.54.085801

    Article  Google Scholar 

  9. Choe JE, You JM, Yun M et al (2015) Manganese Dioxide/reduced graphene oxide with Poly(3,4-ethylenedioxythiophene) for improved electrocatalytic oxygen reduction reaction. J Nanosci Nanotechno 15:5684–5690. https://doi.org/10.1166/jnn.2015.10284

    Article  CAS  Google Scholar 

  10. Cui LL, Lv GJ, He XQ (2015) Enhanced oxygen reduction performance by novel pyridine substituent groups of iron (II) phthalocyanine with graphene composite. J Power Sources 282:9–18. https://doi.org/10.1016/j.jpowsour.2015.02.031

    Article  CAS  Google Scholar 

  11. Shao YY, Yin GP, Gao YZ (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566. https://doi.org/10.1016/j.jpowsour.2007.07.004

    Article  CAS  Google Scholar 

  12. Li QH, Chen WX, Xiao H et al (2018) Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater 30:1800588. https://doi.org/10.1002/adma.201800588

    Article  CAS  Google Scholar 

  13. Ye YF, Cai F, Li HB et al (2017) Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 38:281–289. https://doi.org/10.1016/j.nanoen.2017.05.042

    Article  CAS  Google Scholar 

  14. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  15. Shinde SS, Lee CH, Sami A, Kim DH, Lee SU, Lee JH (2017) Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries. ACS Nano 11:347–357. https://doi.org/10.1021/acsnano.6b05914

    Article  CAS  Google Scholar 

  16. Wei DC, Liu YQ, Zhang HL et al (2009) Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J Am Chem Soc 131:11147–11154. https://doi.org/10.1021/ja903092k

    Article  CAS  Google Scholar 

  17. Torad NL, Salunkhe RR, Li YQ et al (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-Eur J 20:7895–7895. https://doi.org/10.1002/chem.201400089

    Article  CAS  Google Scholar 

  18. Liu YY, Jiang HL, Zhu YH, Yang XL, Li CZ (2016) Transition metals (Fe Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4:1694–1701. https://doi.org/10.1039/c5ta10551j

    Article  CAS  Google Scholar 

  19. Huang YB, Liang J, Wang XS, Cao R (2017) Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157. https://doi.org/10.1039/c6cs00250a

    Article  CAS  Google Scholar 

  20. Liu JW, Chen LF, Cui H, Zhang JY, Zhang L, Su CY (2014) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061. https://doi.org/10.1039/c4cs00094c

    Article  CAS  Google Scholar 

  21. Ahn SH, Klein MJ, Manthiram A (2017) 1D Co- and N-Doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv Energy Mater 7:1601979. https://doi.org/10.1002/aenm.201601979

    Article  CAS  Google Scholar 

  22. Zhang GJ, Li CX, Liu J et al (2014) One-step conversion from metal-organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. J Mater Chem A 2:8184–8189. https://doi.org/10.1039/c4ta00677a

    Article  CAS  Google Scholar 

  23. Hupp JT, Poeppelmeier KR (2005) Better living through nanopore chemistry. Science 309:2008–2009. https://doi.org/10.1126/science.1117808

    Article  CAS  Google Scholar 

  24. Qiu SL, Zhu GS (2009) Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coordin Chem Rev 253:2891–2911. https://doi.org/10.1016/j.ccr.2009.07.020

    Article  CAS  Google Scholar 

  25. Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. P Natl Acad Sci USA 103:10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  Google Scholar 

  26. Huang XC, Lin YY, Zhang JP, Chen XM (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Edit 45:1557–1559. https://doi.org/10.1002/anie.200503778

    Article  CAS  Google Scholar 

  27. Kuo CH, Tang Y, Chou LY et al (2012) Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J Am Chem Soc 134:14345–14348. https://doi.org/10.1021/ja306869j

    Article  CAS  Google Scholar 

  28. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006. https://doi.org/10.1038/Nenergy.2015.6

    Article  CAS  Google Scholar 

  29. Xia W, Qu C, Liang ZB et al (2017) High-performance energy storage and conversion materials derived from a single metal organic framework/Graphene Aerogel composite. Nano Lett 17:2788–2795. https://doi.org/10.1021/acs.nanolett.6b05004

    Article  CAS  Google Scholar 

  30. Lai QX, Zhu JJ, Zhao YX, Liang YY, He JP, Chen JH (2017) MOF-based metal-doping-induced synthesis of hierarchical porous Cu-N/C oxygen reduction electrocatalysts for Zn-Air batteries. Small 13:1700740. https://doi.org/10.1002/smll.201700740

    Article  CAS  Google Scholar 

  31. Zhao Y, Li XF, Yan B et al (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175. https://doi.org/10.1002/aenm.201502175

    Article  CAS  Google Scholar 

  32. Tang J, Salunkhe RR, Liu J et al (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  Google Scholar 

  33. Liu SH, Wang ZY, Zhou S et al (2017) Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater 29:1700874. https://doi.org/10.1002/adma.201700874

    Article  CAS  Google Scholar 

  34. Ahn SH, Yu X, Manthiram A (2017) “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater 29:1606534. https://doi.org/10.1002/adma.201606534

    Article  CAS  Google Scholar 

  35. Li B, Ge XM, Goh FWT et al (2015) Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale 7:1830–1838. https://doi.org/10.1039/c4nr05988c

    Article  CAS  Google Scholar 

  36. Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Edit 55:5990–5993. https://doi.org/10.1002/anie.201600133

    Article  CAS  Google Scholar 

  37. Qin JS, Du DY, Guan W et al (2015) Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 137:7169–7177. https://doi.org/10.1021/jacs.5b02688

    Article  CAS  Google Scholar 

  38. Ma X, Zhao X, Huang JS, Sun LT, Li Q, Yang XR (2017) Fine Co nanoparticles encapsulated in a N-Doped porous carbon matrix with superficial N-Doped porous carbon nanofibers for efficient oxygen reduction. Acs Appl Mater Inter 9:21747–21755. https://doi.org/10.1021/acsami.7b02490

    Article  CAS  Google Scholar 

  39. Zhao YX, Lai QX, Zhu JJ et al (2018) Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 14:1704207. https://doi.org/10.1002/smll.201704207

    Article  CAS  Google Scholar 

  40. Zhang W, Yao X, Zhou S et al (2018) ZIF-8/ZIF-67-Derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 14:1800423. https://doi.org/10.1002/smll.201800423

    Article  CAS  Google Scholar 

  41. Yin PQ, Yao T, Wu Y et al (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Edit 55:10800–10805. https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  42. Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943. https://doi.org/10.1126/science.1152516

    Article  CAS  Google Scholar 

  43. Mahmood A, Guo WH, Tabassum H, Zou RQ (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater. https://doi.org/10.1002/aenm.201600423

    Article  Google Scholar 

  44. You SJ, Gong XB, Wang W et al (2016) Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks. Adv Energy Mater 6:1501497. https://doi.org/10.1002/aenm.201501497

    Article  CAS  Google Scholar 

  45. Yu GL, Sun J, Muhammad F, Wang PY, Zhu GS (2014) Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene. Rsc Adv 4:38804–38811. https://doi.org/10.1039/c4ra03746d

    Article  CAS  Google Scholar 

  46. Li Q, Xu P, Gao W et al (2014) Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O-2 batteries. Adv Mater 26:1378–1386. https://doi.org/10.1002/adma.201304218

    Article  CAS  Google Scholar 

  47. Zhu YW, Murali S, Cai WW et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:5226–5226. https://doi.org/10.1002/adma.201090156

    Article  CAS  Google Scholar 

  48. Lin L, Zhu Q, Xu AW (2014) Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc 136:11027–11033. https://doi.org/10.1021/ja504696r

    Article  CAS  Google Scholar 

  49. Zhang KL, Li XN, Liang JW et al (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182. https://doi.org/10.1016/j.electacta.2014.12.108

    Article  CAS  Google Scholar 

  50. Lin QP, Bu XH, Kong AG, Mao CY, Bu F, Feng PY (2015) Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv Mater 27:3431–3436. https://doi.org/10.1002/adma.201500727

    Article  CAS  Google Scholar 

  51. Wang ZY, Dong YF, Li HJ et al (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002. https://doi.org/10.1038/ncomms6002

    Article  CAS  Google Scholar 

  52. Diaz J, Paolicelli G, Ferrer S, Comin F (1996) Separation of the sp 3 and sp 2 components in the C1s photoemission spectra of amorphous carbon films. Phy Review B 54:8064

    Article  CAS  Google Scholar 

  53. Shi PC, Yi JD, Liu TT et al (2017) Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J Mater Chem A 5:12322–12329. https://doi.org/10.1039/c7ta02999c

    Article  CAS  Google Scholar 

  54. Niu WH, Li LG, Liu XJ et al (2015) Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J Am Chem Soc 137:5555–5562. https://doi.org/10.1021/jacs.5b02027

    Article  CAS  Google Scholar 

  55. Piao Y, Meany B, Powell LR et al (2013) Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 5:840–845. https://doi.org/10.1038/nchem.1711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Tianjin Science and Technology Committee (No. 19YFZCSF00830) and the National Natural Science Foundation of China (NO. 21776214).

Author information

Authors and Affiliations

Authors

Contributions

FF contributed to conceptualization, methodology, investigation, data curation, writing—original draft. ZW contributed to visualization, writing—editing, formal analysis. DZ contributed to formal analysis. MG contributed to formal analysis. XL contributed to formal analysis. ZL contributed to formal analysis. YW contributed to formal analysis. XL contributed to formal analysis. YT contributed to formal analysis. XD contributed to formal analysis. YL contributed to conceptualization, methodology, resources, writing—review and editing, funding acquisition, project administration, supervision. LZ contributed to conceptualization, methodology, resources, writing—review and editing, funding acquisition, project administration, supervision.

Corresponding authors

Correspondence to Yiren Lu or Lihong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F., Wu, Z., Zheng, D. et al. ZnO@zeolitic imidazolate frameworks derived porous hybrid hollow carbon shell as an efficient electrocatalyst for oxygen reduction. J Mater Sci 56, 14989–15003 (2021). https://doi.org/10.1007/s10853-021-06167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06167-8

Navigation