Skip to main content

Advertisement

Log in

Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tuning of porosity and surface properties of nanoparticles especially on carbon-based nanomaterials, adopting a ‘greener’ or self-activation synthesis technique for electrical charge storage, is progressing. Herein, we report the self-activation of Teak wood sawdust in a nitrogen atmosphere at different activation temperatures to synthesize carbon nanoparticles. The activated carbon nanoparticles synthesized at 900 °C exhibits a maximum ~ 360 m2 g−1 surface area with ~ 2 nm average pore size diameter. Five electrolytes viz. KOH, KCl, Na2SO4, NaCl, and H3PO4 are used for studying the supercapacitance nature of the activated carbon nanoparticles in a 3-electrode configuration. A maximum specific capacitance of ~ 208 F g−1 @ 0.25 A g−1 is obtained in 1 M KOH as the electrolyte. Two symmetric supercapacitors, aqueous (1 M KOH) and solid-state (PVA/KOH), are fabricated, and their performance difference is compiled. The solid-state symmetric supercapacitor performs in a wider voltage window (1.7 V) with a superior energy density of 27.1 Wh kg−1 at a power density of 178 W kg−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Barzegar F, Bello A, Dangbegnon JK, Manyala N, Xia X (2017) Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability. Appl Energy 207:417–426. https://doi.org/10.1016/j.apenergy.2017.05.110

    Article  CAS  Google Scholar 

  2. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A 8(12):5773–5811. https://doi.org/10.1039/C9TA11618D

    Article  CAS  Google Scholar 

  3. Gong Y, Li D, Fu Q, Zhang Y, Pan C (2020) Nitrogen self-doped porous carbon for high-performance supercapacitors. J ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.9b02077

    Article  Google Scholar 

  4. Divyashree A, Manaf SABA, Yallappa S, Chaitra K, Kathyayini N, Hegde G (2016) Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach. J Energy Chem 25(5):880–887. https://doi.org/10.1016/j.jechem.2016.08.002

    Article  Google Scholar 

  5. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044. https://doi.org/10.1039/C7DT02392H

    Article  CAS  Google Scholar 

  6. Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10(5):2427–2437. https://doi.org/10.1039/C7NR07158B

    Article  CAS  Google Scholar 

  7. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00520-3

    Article  Google Scholar 

  8. Bhat VS, Hegde G, Nasrollahzadeh M (2020) A sustainable technique to solve growing energy demand: porous carbon nanoparticles as electrode materials for high-performance supercapacitors. J Appl Electrochem. https://doi.org/10.1007/s10800-020-01479-0

    Article  Google Scholar 

  9. Bhat VS, Kanagavalli P, Sriram G, Prabhu BR, John NS, Veerapandian M, Kurkuri M, Hegde G (2020) Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. J Energy Storage 32:101829. https://doi.org/10.1016/j.est.2020.101829

    Article  Google Scholar 

  10. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760. https://doi.org/10.1126/science.1132195

    Article  CAS  Google Scholar 

  11. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731. https://doi.org/10.1021/ja7106178

    Article  CAS  Google Scholar 

  12. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537. https://doi.org/10.1126/science.1200770

    Article  CAS  Google Scholar 

  13. Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B (2018) Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions. J Power Sour 396:182–206. https://doi.org/10.1016/j.jpowsour.2018.06.004

    Article  CAS  Google Scholar 

  14. Wu G, Tan P, Wang D, Li Z, Peng L, Hu Y, Wang C, Zhu W, Chen S, Chen W (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7(1):43676. https://doi.org/10.1038/srep43676

    Article  Google Scholar 

  15. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423. https://doi.org/10.1063/1.1290146

    Article  CAS  Google Scholar 

  16. Han X, Zhu J, Lei L, Wang Y, Lan T, Kang C, Li Y, Ma Y (2020) Constructing novel fiber electrodes with porous nickel yarns for all-solid-state flexible wire-shaped supercapacitors. New J Chem 44:19076–19082. https://doi.org/10.1039/D0NJ03308A

    Article  CAS  Google Scholar 

  17. An C, Zhang Y, Guo H, Wang Y (2019) Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv 1(12):4644–4658. https://doi.org/10.1039/C9NA00543A

    Article  CAS  Google Scholar 

  18. Delgado NM, Monteiro R, Abdollahzadeh M, Ribeirinha P, Bentien A, Mendes A (2020) 2D-dynamic phenomenological modelling of vanadium redox flow batteries—Analysis of the mass transport related overpotentials. J Power Sour 480:229142. https://doi.org/10.1016/j.jpowsour.2020.229142

    Article  CAS  Google Scholar 

  19. Xu J, Han F, Fang D, Wang X, Tang J, Tang W (2020) Hierarchical bimetallic hydroxide/chalcogenide core–sheath microarrays for freestanding ultrahigh rate supercapacitors. Nanoscale 12(1):72–78. https://doi.org/10.1039/C9NR08418E

    Article  CAS  Google Scholar 

  20. Krishnan SG, Harilal M, Yar A, Vijayan BL, Dennis JO, Yusoff MM, Jose R (2017) Critical influence of reduced graphene oxide mediated binding of M (M=Mg, Mn) with Co ions, chemical stability and charge storability enhancements of spinal-type hierarchical MCo2O4 nanostructures. Electrochim Acta 243:119–128. https://doi.org/10.1016/j.electacta.2017.05.064

    Article  CAS  Google Scholar 

  21. Krishnan SG, Rahim MHA, Jose R (2016) Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance psuedocapacitor electrode. J Alloy Compd 656:707–713. https://doi.org/10.1016/j.jallcom.2015.10.007

    Article  CAS  Google Scholar 

  22. Mohamed AM, Abo El Naga AO, Zaki T, Hassan HB, Allam NK (2020) Bimetallic Co–W–S chalcogenides confined in N S-codoped porous carbon matrix derived from metal-organic frameworks for highly stable electrochemical supercapacitors. ACS Appl Energy Mater 3(8):8064–8074. https://doi.org/10.1021/acsaem.0c01513

    Article  CAS  Google Scholar 

  23. Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z (2020) Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 49(18):6666–6693. https://doi.org/10.1039/D0CS00175A

    Article  CAS  Google Scholar 

  24. Lin Z, Barbara D, Taberna P-L, Van Aken KL, Anasori B, Gogotsi Y, Simon P (2016) Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J Power Sour 326:575–579. https://doi.org/10.1016/j.jpowsour.2016.04.035

    Article  CAS  Google Scholar 

  25. Dall’Agnese Y, Rozier P, Taberna P-L, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sour 306:510–515. https://doi.org/10.1016/j.jpowsour.2015.12.036

    Article  CAS  Google Scholar 

  26. Khosrozadeh A, Xing M, Wang Q (2015) A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl Energy 153:87–93. https://doi.org/10.1016/j.apenergy.2014.08.046

    Article  CAS  Google Scholar 

  27. Fu Z, Li Z, Si P, Tao F (2019) A hierarchical energy management strategy for fuel cell/battery/supercapacitor hybrid electric vehicles. Int J Hydrog Energy 44(39):22146–22159. https://doi.org/10.1016/j.ijhydene.2019.06.158

    Article  CAS  Google Scholar 

  28. Yang B, Wang J, Zhang X, Wang J, Shu H, Li S, He T, Lan C, Yu T (2020) Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control. J Power Sour 448:227444. https://doi.org/10.1016/j.jpowsour.2019.227444

    Article  CAS  Google Scholar 

  29. Miñambres-Marcos VM, Guerrero-Martínez MÁ, Barrero-González F, Milanés-Montero MI (2017) A grid connected photovoltaic inverter with battery-supercapacitor hybrid energy storage. Sensors 17(8):1856. https://doi.org/10.3390/s17081856

    Article  CAS  Google Scholar 

  30. Divyashree A, Hegde G (2015) Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications—a review. RSC Adv 5(107):88339–88352. https://doi.org/10.1039/C5RA19392C

    Article  CAS  Google Scholar 

  31. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726. https://doi.org/10.1016/j.carbon.2019.09.018

    Article  CAS  Google Scholar 

  32. Lu H, Zhao XS (2017) Biomass-derived carbon electrode materials for supercapacitors. SUT J Math 1(6):1265–1281. https://doi.org/10.1039/C7SE00099E

    Article  CAS  Google Scholar 

  33. Hegde G, Manaf SAA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 3(9):2247–2253. https://doi.org/10.1021/acssuschemeng.5b00517

    Article  CAS  Google Scholar 

  34. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5(6):2411–2428. https://doi.org/10.1039/C6TA08742F

    Article  CAS  Google Scholar 

  35. He J, Zhang D, Han M, Liu X, Wang Y, Li Y, Zhang X, Wang K, Feng H, Wang Y (2019) One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application. J Energy Storage 21:94–104. https://doi.org/10.1016/j.est.2018.11.015

    Article  Google Scholar 

  36. Lyu L, Seong K-D, Ko D, Choi J, Lee C, Hwang T, Cho Y, Jin X, Zhang W, Pang H, Piao Y (2019) Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater Chem Front 3(12):2543–2570. https://doi.org/10.1039/C9QM00348G

    Article  CAS  Google Scholar 

  37. Kleszyk P, Ratajczak P, Skowron P, Jagiello J, Abbas Q, Frąckowiak E, Béguin F (2015) Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon 81:148–157. https://doi.org/10.1016/j.carbon.2014.09.043

    Article  CAS  Google Scholar 

  38. Sun K, Leng C-Y, Jiang J-C, Bu Q, Lin G-F, Lu X-C, Zhu G-Z (2017) Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater 32(5):451–459. https://doi.org/10.1016/S1872-5805(17)60134-3

    Article  Google Scholar 

  39. Bommier C, Xu R, Wang W, Wang X, Wen D, Lu J, Ji X (2015) Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy 13:709–717. https://doi.org/10.1016/j.nanoen.2015.03.022

    Article  CAS  Google Scholar 

  40. Rizanti DE, Darmawan W, George B, Merlin A, Dumarcay S, Chapuis H, Gérardin C, Gelhaye E, Raharivelomanana P, Sari RK, Syafii W, Mohamed R, Gerardin P (2018) Comparison of teak wood properties according to forest management: short versus long rotation. Ann For Sci 75(2):39. https://doi.org/10.1007/s13595-018-0716-8

    Article  Google Scholar 

  41. Akshaya KB, Bhat VS, Varghese A, George L, Hegde G (2019) Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J Electrochem Soc 166(13):B1097–B1106. https://doi.org/10.1149/2.0251913jes

    Article  CAS  Google Scholar 

  42. Kumar A, Hegde G, Manaf SABA, Ngaini Z, Sharma KV (2014) Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chem Commun 50(84):12702–12705. https://doi.org/10.1039/C4CC04378B

    Article  CAS  Google Scholar 

  43. Panomsuwan G, Saito N, Ishizaki T (2016) Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon 98:411–420. https://doi.org/10.1016/j.carbon.2015.11.013

    Article  CAS  Google Scholar 

  44. Snowdon MR, Mohanty AK, Misra M (2014) A study of carbonized lignin as an alternative to carbon black. ACS Sustain Chem Eng 2(5):1257–1263. https://doi.org/10.1021/sc500086v

    Article  CAS  Google Scholar 

  45. Supriya S, Sriram G, Ngaini Z, Kavitha C, Kurkuri M, De Padova IP, Hegde G (2019) The role of temperature on physical-chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-019-00675-0

    Article  Google Scholar 

  46. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSJP, Chemistry A (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). De Gruyter 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  47. Borchardt L, Oschatz M, Kaskel S (2014) Tailoring porosity in carbon materials for supercapacitor applications. Mater Horiz 1(2):157–168. https://doi.org/10.1039/C3MH00112A

    Article  CAS  Google Scholar 

  48. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17(5):3097–3104. https://doi.org/10.1021/acs.nanolett.7b00533

    Article  CAS  Google Scholar 

  49. Liu S, Sankar KV, Kundu A, Ma M, Kwon J-Y, Jun SC (2017) Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 9(26):21829–21838. https://doi.org/10.1021/acsami.7b05384

    Article  CAS  Google Scholar 

  50. Guo N, Li M, Sun X, Wang F, Yang R (2017) Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem 19(11):2595–2602. https://doi.org/10.1039/C7GC00506G

    Article  CAS  Google Scholar 

  51. Yang F, Zhao M, Zheng B, Xiao D, Wu L, Guo Y (2012) Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem 22(48):25471–25479. https://doi.org/10.1039/C2JM35471C

    Article  CAS  Google Scholar 

  52. Gopalakrishnan A, Badhulika S (2020) Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J Power Sour 480:228830. https://doi.org/10.1016/j.jpowsour.2020.228830

    Article  CAS  Google Scholar 

  53. Raymundo-Piñero E, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Func Mater 19(7):1032–1039. https://doi.org/10.1002/adfm.200801057

    Article  CAS  Google Scholar 

  54. Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18(14):1877–1882. https://doi.org/10.1002/adma.200501905

    Article  CAS  Google Scholar 

  55. Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  CAS  Google Scholar 

  56. Chhiti Y, Salvador S, Commandré J-M, Broust F (2012) Thermal decomposition of bio-oil: focus on the products yields under different pyrolysis conditions. Fuel 102:274–281. https://doi.org/10.1016/j.fuel.2012.06.098

    Article  CAS  Google Scholar 

  57. Majumdar D, Maiyalagan T, Jiang Z (2019) Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6(17):4343–4372. https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  58. Raghavendra KVG, Vinoth R, Zeb K, Gopi CVVM, Sambasivam S, Kummara MR, Obaidat IM, Kim HJ (2020) An intuitive review of supercapacitors with recent progress and novel device applications. J Energy Storage 3:101652. https://doi.org/10.1016/j.est.2020.101652

    Article  Google Scholar 

  59. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950. https://doi.org/10.1039/C5CS00580A

    Article  CAS  Google Scholar 

  60. Liu X, Yuan L, Zhong M, Ni S, Yang F, Fu Z, Xu X, Wang C, Tang Y (2020) Enhanced capacitive performance by improving the graphitized structure in carbon aerogel microspheres. RSC Adv 10(37):22242–22249. https://doi.org/10.1039/D0RA01735C

    Article  CAS  Google Scholar 

  61. Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739. https://doi.org/10.1016/j.jechem.2016.04.007

    Article  Google Scholar 

  62. Chaithra KP, Bhat VS, Akshaya KB, Maiyalagan T, Hegde G, Varghese A, George L (2020) Unique host matrix to disperse pd nanoparticles for electrochemical sensing of morin: sustainable engineering approach. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.0c00758

    Article  Google Scholar 

  63. Xu B, Chen Y, Wei G, Cao G, Zhang H, Yang Y (2010) Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. J Mater Chem Phys 124(1):504–509. https://doi.org/10.1016/j.matchemphys.2010.07.002

    Article  CAS  Google Scholar 

  64. Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11. https://doi.org/10.1016/j.electacta.2015.03.048

    Article  CAS  Google Scholar 

  65. Xu X, Gao J, Tian Q, Zhai X, Liu Y (2017) Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl Surf Sci 411:170–176. https://doi.org/10.1016/j.apsusc.2017.03.124

    Article  CAS  Google Scholar 

  66. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19(17):4132–4140. https://doi.org/10.1039/C7GC01681F

    Article  CAS  Google Scholar 

  67. Li Z, Gao S, Mi H, Lei C, Ji C, Xie Z, Yu C, Qiu J (2019) High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon 149:273–280

    Article  CAS  Google Scholar 

  68. Chen M, Yu D, Zheng X, Dong X (2019) Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J Energy Storage 21:105–112

    Article  Google Scholar 

  69. Qiu D, Kang C, Gao A, Xie Z, Li Y, Li M, Wang F, Yang R (2019) Sustainable low-temperature activation to customize pore structure and heteroatoms of biomass-derived carbon enabling unprecedented durable supercapacitors. ACS Sustain Chem Eng 7(17):14629–14638. https://doi.org/10.1016/j.carbon.2019.04.056

    Article  CAS  Google Scholar 

  70. Ma T, Zhang X, Wang Y (2019) Tassel tree flowers-derived hierarchically porous carbons with high surface area for high-performance flexible all-solid-state symmetric supercapacitors. J Energy Storage 26:101014. https://doi.org/10.1016/j.est.2019.101014

    Article  Google Scholar 

  71. Xu Z, Chen J, Zhang X, Song Q, Wu J, Ding L, Zhang C, Zhu H, Cui H (2019) Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous Mesoporous Mater 276:280–291. https://doi.org/10.1016/j.micromeso.2018.09.023

    Article  CAS  Google Scholar 

  72. Chen L, Wen Z, Chen L, Wang W, Ai Q, Hou G, Li Y, Lou J, Ci L (2020) Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon 158:456–464. https://doi.org/10.1016/j.carbon.2019.11.012

    Article  CAS  Google Scholar 

  73. Shan D, Yang J, Liu W, Yan J, Fan Z (2016) Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A 4(35):13589–13602. https://doi.org/10.1039/C6TA05406D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Gurumurthy Hegde acknowledges DST-Nanomission, Govt of India for providing research grant on “Biowaste based porous nanomaterials for efficient low-cost energy storage devices” [SR/NM/NT-1026/2017]. One of the author Syam G. Krishnan acknowledge Sunway University for providing research grant through Individual Research Grant Scheme (GRTIN-IRG-59-2021).

Author information

Authors and Affiliations

Authors

Contributions

VSB contributed to investigation, formal analysis and writing; SGK contributed to validation and writing; TJJ contributed to investigation; TR contributed to resources and validation; US contributed to resources and validation; VR contributed to validation and formal analysis; MK contributed to validation and formal analysis; GH contributed to conceptualization, funding acquisition, methodology, project administration, supervision and validation.

Corresponding author

Correspondence to Gurumurthy Hegde.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20811 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, V.S., Krishnan, S.G., Jayeoye, T.J. et al. Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors. J Mater Sci 56, 13271–13290 (2021). https://doi.org/10.1007/s10853-021-06154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06154-z

Navigation