Skip to main content

A review of thermoplastic polymer foams for functional applications

Abstract

Recently, functional applications of thermoplastic foams have received extensive attention from the research and materials communities, focusing on their various applications, key challenges, material systems designs, processing methods, and cellular structure characteristics needed for specific functional applications. This review paper starts with consideration of the microcellular foaming mechanism and basic concepts of microcellular foam processing, followed by polymer modification methods, and crucial factors that determine the performance of thermoplastic foams. Special emphasis has been placed on the synergies between foaming and reinforcements, including functional fillers and polymer blends; improvements in homogeneous, functional properties by achieving uniform cell structure and cell dispersion in polymer systems; and comparison of melt processing and solvent-based methods. Then, a wide array of advanced functional applications for foams—such as lightweight applications, heat and sound insulation, electromagnetic shielding, tissue engineering, oil spill cleanup, shape memory, and flexible materials—will be presented. In particular, the relationships between cellular structure and anticipated properties—including mechanical, barrier, dielectric, biomedical, and other properties required in advanced functional applications—will be discussed. Finally, we will outline a future perspective of lightweight and functional foams and suggest recommended future work regarding functional microcellular foams.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Dominick VRPE, Donald VRPD, Marlene GRPE (2000) Injection molding handbook, 1st ed. Springer, New York

    Google Scholar 

  2. Dearmitt C, Rothon R (2011) Applied plastics engineering handbook: processing and materials, 2nd ed. Elsevier

  3. Zhai W, Xia Q, Zhou K, Yue X, Ren M, Zheng G, Dai K, Liu C, Shen C (2019) Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem Eng J 372:373–382

    CAS  Google Scholar 

  4. Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39(4):627–655

    CAS  Google Scholar 

  5. Mosanenzadeh SG, Naguib HE, Park CB, Atalla N (2015) Design and development of novel bio-based functionally graded foams for enhanced acoustic capabilities. J Mater Sci 50(3):1248–1256.10.1007/s10853-014-8681-6https://doi.org/10.1007/s10853-014-8681-6

    CAS  Article  Google Scholar 

  6. Zhang H, Zhang G, Li J, Fan X, Jing Z, Li J, Shi X (2017) Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos Part a-Appl Sci Manuf 100:128–138

    CAS  Google Scholar 

  7. Wang G, Zhao J, Wang G, Mark LH, Park CB, Zhao G (2017) Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. Eur Polymer J 95:382–393

    CAS  Google Scholar 

  8. Henning F, Kärger L, Dörr D, Schirmaier FJ, Seuffert J, Bernath A (2019) Fast processing and continuous simulation of automotive structural composite components. Compos Sci Technol 171:261–279

    CAS  Google Scholar 

  9. Gourdon E, Seppi M (2010) On the use of porous inclusions to improve the acoustical response of porous materials: analytical model and experimental verification. Appl Acoust 71(4):283–298

    Google Scholar 

  10. Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng L-S (2016) The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413

    CAS  Google Scholar 

  11. Suh NP (1997) Microcellular Plastics. In: Stevenson JF (ed) Innovation in polymer processing – molding. Hanser Publishers, Munich, pp 93–149

    Google Scholar 

  12. Grossman RF, Nwabunma D (2010) Microcellular injection molding, 1st ed. John Wiley & Sons, New Jersey

    Google Scholar 

  13. Wang G, Zhao G, Dong G, Mu Y, Park CB (2018) Lightweight and strong microcellular injection molded PP/talc nanocomposite. Compos Sci Technol 168:38–46

    CAS  Google Scholar 

  14. Ameli A, Nofar M, Jahani D, Rizvi G, Park CB (2015) Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors. Chem Eng J 262:78–87

    CAS  Google Scholar 

  15. Zhao H, Zhao G, Turng L-S, Peng X (2015) Enhancing nanofiller dispersion through prefoaming and its effect on the microstructure of microcellular injection molded poly lactic acid/clay nanocomposites. Ind Eng Chem Res 54(28):7122–7130

    CAS  Google Scholar 

  16. Xie P, Wu G, Cao Z, Han Z, Zhang Y, An Y, Yang W (2018) Effect of mold opening process on microporous structure and properties of microcellular polylactide-polylactide nanocomposites. Polymers 10(5):554–564

    Google Scholar 

  17. Wang L, Ishihara S, Hikima Y, Ohshima M, Sekiguchi T, Sato A, Yano H (2017) Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers. ACS Appl Mater Interfaces 9(11):9250–9254

    CAS  Google Scholar 

  18. Wang L, Ando M, Kubota M, Ishihara S, Hikima Y, Ohshima M, Sekiguchi T, Sato A, Yano H (2017) Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos Part a-Appl Sci Manuf 98:166–173

    CAS  Google Scholar 

  19. Miyamoto R, Yasuhara S, Shikuma H, Ohshima M (2014) Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents. Polym Eng Sci 54(9):2075–2085

    CAS  Google Scholar 

  20. Sun X, Kharbas H, Peng J, Turng L-S (2015) A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 56:102–110

    CAS  Google Scholar 

  21. Chen X, Heuzey MC, Carreau PJ (2004) Rheological properties of injection molded LDPE and mPE foams. Polym Eng Sci 44(11):2158–2164

    CAS  Google Scholar 

  22. Volpe V, Lanzillo S, Affinita G, Villacci B, Macchiarolo I, Pantani R (2019) Lightweight high-performance polymer composite for automotive applications. Polymers 11(2):326

    Google Scholar 

  23. Peng J, Walsh PJ, Sabo RC, Turng L-S, Clemons CM (2016) Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer 84:158–166

    CAS  Google Scholar 

  24. Jia Y, Bai S, Park CB, Wang Q (2017) Effect of boric acid on the foaming properties and cell structure of poly (vinyl alcohol) foam prepared by supercritical-CO2 thermoplastic extrusion foaming. Ind Eng Chem Res 56(23):6655–6663

    CAS  Google Scholar 

  25. Notario B, Pinto J, Rodriguez-Perez MA (2015) Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer 63:116–126

    CAS  Google Scholar 

  26. Zhai W, Wang H, Yu J, Dong J, He J (2008) Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming. Polym Eng Sci 48(7):1312–1321

    CAS  Google Scholar 

  27. Wang L, Ishihara S, Ando M, Minato A, Hikima Y, Ohshima M (2016) Fabrication of high expansion microcellular injection-molded polypropylene foams by adding long-chain branches. Ind Eng Chem Res 55(46):11970–11982

    CAS  Google Scholar 

  28. Lee S, Zhu L, Maia J (2015) The effect of strain-hardening on the morphology and mechanical and dielectric properties of multi-layered PP foam/PP film. Polymer 70:173–182

    CAS  Google Scholar 

  29. Nofar M (2016) Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater Des 101:24–34

    CAS  Google Scholar 

  30. Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 54(9):2382–2391

    CAS  Google Scholar 

  31. Ameli A, Jahani D, Nofar M, Jung PU, Park CB (2014) Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Compos Sci Technol 90:88–95

    CAS  Google Scholar 

  32. Gómez-Monterde J, Sánchez-Soto M, Maspoch ML (2018) Microcellular PP/GF composites: morphological, mechanical and fracture characterization. Compos A Appl Sci Manuf 104:1–13

    Google Scholar 

  33. Hári J, Horváth F, Renner K, Móczó J, Pukánszky B (2018) Comparison of the reinforcing effect of various micro- and nanofillers in PA6. Polym Testing 72:178–186

    Google Scholar 

  34. Saiz-Arroyo C, Angel Rodriguez-Perez M, Ignacio Velasco J, Antonio de Saja J (2013) Influence of foaming process on the structure-properties relationship of foamed LDPE/silica nanocomposites. Compos Part B-Eng 48:40–50

    CAS  Google Scholar 

  35. Zhao B, Hamidinejad M, Zhao C, Li R, Wang S, Kazemi Y, Park CB (2019) A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J Mater Chem A 7(1):133–140

    CAS  Google Scholar 

  36. Sun X, Ye L, Zhao X (2019) Microcellular polyetherimide/carbon nanotube composite foam: structure, property and highly reinforcing mechanism. Eur Polymer J 116:488–496

    CAS  Google Scholar 

  37. Frey M, Romero T, Roger A-C, Edouard D (2019) An intensification of the CO2 methanation reaction: effect of carbon nanofiber network on the hydrodynamic, thermal and catalytic properties of reactors filled with open cell foams. Chem Eng Sci 195:271–280

    CAS  Google Scholar 

  38. Faruk O, Bledzki AK, Matuana LM (2010) Microcellular foamed wood-plastic composites by different processes: a review. Macromol Mater Eng 292(2):113–127

    Google Scholar 

  39. Gong P, Wang G, Minh-Phuong T, Buahom P, Zhai S, Li G, Park CB (2017) Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon 120:1–10

    CAS  Google Scholar 

  40. Ma L, Zhang Y, Wang S (2016) Modified treatment for carbonized cellulose nanofiber application in composites. Compos Part a-Appl Sci Manuf 90:786–793

    CAS  Google Scholar 

  41. Hamidinejad M, Zhao B, Chu RKM, Moghimian N, Naguib HE, Filleter T, Park CB (2018) Ultralight microcellular polymer-graphene nanoplatelet foams with enhanced dielectric performance. ACS Appl Mater Interfaces 10(23):19987–19998

    CAS  Google Scholar 

  42. Fakirov S (2013) Nano-/microfibrillar polymer-polymer and single polymer composites: the converting instead of adding concept. Compos Sci Technol 89:211–225

    CAS  Google Scholar 

  43. Mosanenzadeh SG, Naguib HE, Park CB, Atalla N (2014) Effect of biopolymer blends on physical and acoustical properties of biocomposite foams. J Polym Sci Part B-Polym Phys 52(15):1002–1013

    Google Scholar 

  44. Zhang W, Chen B, Zhao H, Yu P, Fu D, Wen J, Peng X (2013) Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application. J Appl Polym Sci 130(5):3066–3073

    CAS  Google Scholar 

  45. Stoclet G, Seguela R, Lefebvre JM (2011) Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: polylactide/polyamide11. Polymer 52(6):1417–1425

    CAS  Google Scholar 

  46. Zhao J, Zhao Q, Wang C, Guo B, Park CB, Wang G (2017) High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater Des 131:1–11

    CAS  Google Scholar 

  47. Kuang T, Li K, Chen B, Peng X (2017) Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos B Eng 123:112–123

    CAS  Google Scholar 

  48. Kuzmanović M, Delva L, Cardon L, Ragaert K (2016) The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites. Polymers 8:355

    Google Scholar 

  49. Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782

    CAS  Google Scholar 

  50. Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB (2015) Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics. Mech Prop, Rheol Behav Foam Abil, Biomacromolecules 16(12):3925–3935

    CAS  Google Scholar 

  51. Kakroodi AR, Kazemi Y, Rodrigue D, Park CB (2018) Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chem Eng J 351:976–984

    CAS  Google Scholar 

  52. Sun X, Turng L-S (2014) Novel injection molding foaming approaches using gas-laden pellets with N-2, CO2, and N-2 + CO2 as the blowing agents. Polym Eng Sci 54(4):899–913

    CAS  Google Scholar 

  53. Jahani D, Ameli A, Saniei M, Ding W, Park CB, Naguib HE (2015) Characterization of the structure, acoustic property, thermal conductivity, and mechanical property of highly expanded open-cell polycarbonate foams. Macromol Mater Eng 300(1):48–56

    CAS  Google Scholar 

  54. Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng L-S (2017) Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–43444

    CAS  Google Scholar 

  55. Wang L, Hikima Y, Ishihara S, Ohshima M (2017) Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 128:119–127

    CAS  Google Scholar 

  56. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polymer J 98:1–10

    CAS  Google Scholar 

  57. Mosanenzadeh SG, Naguib HE, Park CB, Atalla N (2014) Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption. J Appl Polym Sci 131(7):39518

    Google Scholar 

  58. Wang G, Zhao G, Wang S, Zhang L, Park CB (2018) Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C 6(25):6847–6859

    CAS  Google Scholar 

  59. Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park CB (2018) Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl Mater Interfaces 10(36):30752–30761

    CAS  Google Scholar 

  60. Lv Z, Zhao N, Wu Z, Zhu C, Li Q (2018) Fabrication of novel open-cell foams of poly(ε-caprolactone)/poly(lactic acid) blends for tissue-engineering scaffolds. Ind Eng Chem Res 57(39):12951–12958

    CAS  Google Scholar 

  61. Wang S, Wang K, Pang Y, Li Y, Wu F, Wang S, Zheng W (2016) Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials. J Appl Polym Sci 133(33):43182

    Google Scholar 

  62. Ghariniyat P, Leung SN (2018) Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Compos Part B-Eng 143:9–18

    CAS  Google Scholar 

  63. Guo H, Nicolae A, Kumar V (2015) Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer 70:231–241

    CAS  Google Scholar 

  64. Miller D, Kumar V (2011) Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II tensile and impact properties. Polymer 52(13):2910–2919

    CAS  Google Scholar 

  65. Wang G, Zhao G, Zhang L, Mu Y, Park CB (2018) Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chem Eng J 350:1–11

    Google Scholar 

  66. Wang G, Zhao J, Mark LH, Wang G, Yu K, Wang C, Park CB, Zhao G (2017) Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chem Eng J 325:632–646

    CAS  Google Scholar 

  67. Granqvist CG, et al (2013) Nanotechnology in eco-efficient construction: materials, processes and applications. Woodhead Publishing Limited, p 188–206

  68. Antunes M, Velasco JI (2014) Multifunctional polymer foams with carbon nanoparticles. Prog Polym Sci 39(3):486–509

    CAS  Google Scholar 

  69. Rizvi A, Chu RKM, Park CB (2018) Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams. ACS Appl Mater Interfaces 10(44):38410–38417

    CAS  Google Scholar 

  70. Lee PC, Wang J, Park CB (2006) Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures. Industrial Eng Chem Res 45(1):175–181

    CAS  Google Scholar 

  71. Mahmud MB, Anstey A, Shaayegan V, Lee PC, Park CB (2020) Enhancing the mechanical performance of PA6 based composites by altering their crystallization and rheological behavior via in-situ generated PPS nanofibrils. Compos Part B: Eng 195:108067–108077

    CAS  Google Scholar 

  72. Zhang X, Ding W, Zhao N, Chen J, Park CB (2018) Effects of compressed CO2 and cotton fibers on the crystallization and foaming behaviors of polylactide. Ind Eng Chem Res 57(6):2094–2104

    CAS  Google Scholar 

  73. Liao X, Nawaby AV, Whitfield PS (2010) Carbon dioxide-induced crystallization in poly (L-lactic acid) and its effect on foam morphologies. Polym Int 59(12):1709–1718

    CAS  Google Scholar 

  74. Jiang X-L, Liu T, Xu Z-M, Zhao L, Hu G-H, Yuan W-K (2009) Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent. J Supercrit Fluids 48(2):167–175

    CAS  Google Scholar 

  75. Sungsanit K, Kao N, Bhattacharya SN, Pivsaart S (2010) Physical and rheological properties of plasticized linear and branched PLA. Korea-Aust Rheol J 22(3):187–195

    Google Scholar 

  76. Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53(15):3341–3353

    CAS  Google Scholar 

  77. Nofar M, Tabatabaei A, Ameli A, Park CB (2013) Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N-2, and He. Polymer 54(23):6471–6478

    CAS  Google Scholar 

  78. Di Y, Iannace S, Maio ED, Nicolais L (2010) Reactively modified poly(lactic acid): properties and foam processing. Macromol Mater Eng 290(11):1083–1090

    Google Scholar 

  79. Grigorescu RM, Ghioca P, Iancu L, David ME, Andrei ER, Filipescu MI, Ion R-M, Vuluga Z, Anghel I, Sofran I-E, Nicolae C-A, Gabor AR, Gheboianu A, Bucurica IA (2020) Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Manag 118:391–401

    CAS  Google Scholar 

  80. Xiao W, Liao X, Jiang Q, Zhang Y, Chen J, Yang Q, Li G (2018) Strategy to enhance conductivity of polystyrene/graphene composite foams via supercritical carbon dioxide foaming process. J Supercrit Fluids 142:52–63

    CAS  Google Scholar 

  81. Tang W, Bai J, Liao X, Xiao W, Luo Y, Yang Q, Li G (2018) Carbon nanotube-reinforced silicone rubber nanocomposites and the foaming behavior in supercritical carbon dioxide. J Supercrit Fluids 141:78–87

    CAS  Google Scholar 

  82. Grätzl T, van Dijk Y, Schramm N, Kroll L (2019) Influence of the automotive paint shop on mechanical properties of continuous fibre-reinforced thermoplastics. Compos Struct 208:557–565

    Google Scholar 

  83. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128

    CAS  Google Scholar 

  84. Yuan MJ, Turng LS (2005) Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer 46(18):7273–7292

    CAS  Google Scholar 

  85. Yuan MJ, Turng LS (2006) Studies of microcellular nanocomposites with supercritical fluid assisted injection moulding process. Plast Rubber Compos 35(3):129–138

    CAS  Google Scholar 

  86. Ma Z, Zhang G, Yang Q, Shi X, Li J, Fan X (2016) Microcellular foams of glass-fiber reinforced poly(phenylene sulfide) composites generated using supercritical carbon dioxide. Polym Compos 37(8):2527–2540

    CAS  Google Scholar 

  87. Lohr C, Beck B, Henning F, Weidenmann KA, Elsner P (2019) Mechanical properties of foamed long glass fiber reinforced polyphenylene sulfide integral sandwich structures manufactured by direct thermoplastic foam injection molding. Compos Struct 220:371–385

    Google Scholar 

  88. Roch A, Kehret L, Huber T, Henning F, Elsner P (2015) Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology. In: AIP Conference Proceedings, vol. 1664. p 110013. https://doi.org/10.1063/1.4918488

  89. Roch A, Huber T, Henning F, Elsner P (2014) LFT foam-lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams. In: Alstadt V (Ed.), Proceedings of Pps-29: The 29th international conference of the polymer - conference papers2014, pp. 471–476

  90. Schemme M (2008) LFT – development status and perspectives. Reinf Plast 52(1):32–39

    Google Scholar 

  91. Teixeira D, Giovanela M, Gonella LB, Crespo JS (2015) Influence of injection molding on the flexural strength and surface quality of long glass fiber-reinforced polyamide 6.6 composites. Mater Des 85:695–706

    CAS  Google Scholar 

  92. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Abd Majid MZ (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43:843–862

    CAS  Google Scholar 

  93. Gong P, Wang G, Tran M-P, Buahom P, Zhai S, Li G, Park CB (2017) Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon 120:1–10

    CAS  Google Scholar 

  94. Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10:25–35

    Google Scholar 

  95. Yanpei F, Wei F, Mingqiang Z, Jiangming J, Pin F, Jingtao Y, Zhengdong F, Feng C, Tairong K (2018) Morphological structure, rheological behavior, mechanical properties and sound insulation performance of thermoplastic rubber composites reinforced by different inorganic fillers. Polymers 10(3):276

    Google Scholar 

  96. Bernardo V, Laguna-Gutierrez E, Lopez-Gil A, Rodriguez-Perez MA (2016) Highly anisotropic crosslinked HDPE foams with a controlled anisotropy ratio: Production and characterization of the cellular structure and mechanical properties. Mater Des 114:83–91

    Google Scholar 

  97. Wang G, Wang C, Zhao J, Wang G, Park CB, Zhao G (2017) Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale 9(18):5996–6009

    CAS  Google Scholar 

  98. Zhang C, Zhu B, Lee LJ (2011) Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents. Polymer 52(8):1847–1855

    CAS  Google Scholar 

  99. Gong P, Buahom P, Minh-Phuong T, Saniei M, Park CB, Poetschke P (2015) Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon 93:819–829

    CAS  Google Scholar 

  100. Ferkl P, Pokorny R, Kosek J (2014) Multiphase approach to coupled conduction-radiation heat transfer in reconstructed polymeric foams. Int J Therm Sci 83:68–79

    CAS  Google Scholar 

  101. Yokoyama H, Sugiyama K (2005) Nanocellular structures in block copolymers with CO2-philic blocks using CO2 as a blowing agent: crossover from micro- to nanocellular structures with depressurization temperature. Macromolecules 38(25):10516–10522

    CAS  Google Scholar 

  102. Otsuka T, Taki K, Ohshima M (2008) Nanocellular foams of PS/PMMA polymer blends. Macromol Mater Eng 293(1):78–82

    CAS  Google Scholar 

  103. Costeux S, Zhu L (2013) Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 54(11):2785–2795

    CAS  Google Scholar 

  104. Gong P, Zhai S, Lee R, Zhao C, Buahom P, Li G, Park CB (2018) Environmentally friendly polylactic acid-based thermal insulation foams blown with supercritical CO2. Ind Eng Chem Res 57(15):5464–5471

    CAS  Google Scholar 

  105. Wang G, Wang L, Mark LH, Shaayegan V, Wang G, Li H, Zhao G, Park CB (2018) Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl Mater Interfaces 10(1):1195–1203

    CAS  Google Scholar 

  106. Ritima B, Suprakas R, Anup G (2018) Microstructure development and its influence on the properties of styrene-ethylene-butylene-styrene/polystyrene blends. Polymers 10(4):400

    Google Scholar 

  107. Bujoreanu C, Nedeff F, Benchea M, Agop M (2017) Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl Acoust 119:88–93

    Google Scholar 

  108. Spörrer ANJ, Altstädt V (2007) Controlling morphology of injection molded structural foams by mold design and processing parameters. J Cell Plast 43(4–5):313–330

    Google Scholar 

  109. Fei Y, Fang W, Zhong M, Jin J, Fan P, Yang J, Fei Z, Xu L, Chen F (2019) Extrusion foaming of lightweight polystyrene composite foams with controllable cellular structure for sound absorption application. Polymers 11(1):106

    Google Scholar 

  110. Wang G, Zhao G, Dong G, Mu Y, Park CB, Wang G (2018) Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. Eur Polymer J 103:68–79

    CAS  Google Scholar 

  111. Hamzany Y, Feinmesser R, Shpitzer T, Mizrachi A, Hilly O, Hod R, Bahar G, Otradnov I, Gavish M, Nagler RM (2013) Is human saliva an indicator of the adverse health effects of using mobile phones? Antioxid Redox Signal 18(6):622–627

    CAS  Google Scholar 

  112. Ameli A, Nofar M, Park CB, Pötschke P, Rizvi G (2014) Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 71:206–217

    CAS  Google Scholar 

  113. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    CAS  Google Scholar 

  114. Chen J, Cui X, Zhu Y, Jiang W, Sui K (2017) Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of pi-pi interactions and dipole-dipole interactions. Carbon 114:441–448

    CAS  Google Scholar 

  115. Gu J, Liang C, Zhao X, Gan B, Qiu H, Guo Y, Yang X, Zhang Q, Wang D-Y (2017) Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol 139:83–89

    CAS  Google Scholar 

  116. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    CAS  Google Scholar 

  117. Yan DX, Pang H, Xu L, Bao Y, Ren PG, Lei J, Li ZM (2014) Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology 25(14):145705

    Google Scholar 

  118. Minh-Phuong T, Detrembleur C, Alexandre M, Jerome C, Thomassin J-M (2013) The influence of foam morphology of multi-walled carbon nanotubes/poly (methyl methacrylate) nanocomposites on electrical conductivity. Polymer 54(13):3261–3270

    Google Scholar 

  119. Zhang H-B, Yan Q, Zheng W-G, He Z, Yu Z-Z (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924

    CAS  Google Scholar 

  120. Ameli A, Kazemi Y, Wang S, Park CB, Poetschke P (2017) Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos Part a-Appl Sci Manuf 96:28–36

    CAS  Google Scholar 

  121. Hamidinejad SM, Chu RKM, Zhao B, Park CB, Filleter T (2018) Enhanced thermal conductivity of graphene nanoplatelet-polymer nanocomposites fabricated via supercritical fluid-assisted in situ exfoliation. ACS Appl Mater Interfaces 10(1):1225–1236

    CAS  Google Scholar 

  122. Jin Y, Xia N, Gerhardt RA (2016) Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30:407–416

    CAS  Google Scholar 

  123. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    CAS  Google Scholar 

  124. Ameli A, Jung PU, Park CB (2013) Through-plane electrical conductivity of injection-molded polypropylene/carbon-fiber composite foams. Compos Sci Technol 76:37–44

    CAS  Google Scholar 

  125. Kakroodi AR, Kazemi Y, Rodrigue D (2015) Effect of conductive particles on the mechanical, electrical, and thermal properties of maleated polyethylene. Polym Adv Technol 26(4):362–368

    Google Scholar 

  126. Ameli A, Arjmand M, Poetschke P, Krause B, Sundararaj U (2016) Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon 106:260–278

    CAS  Google Scholar 

  127. Antunes M, Mudarra M, Ignacio Velasco J (2011) Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams. Carbon 49(2):708–717

    CAS  Google Scholar 

  128. Monnereau L, Urbanczyk L, Thomassin J-M, Pardoen T, Bailly C, Huynen I, Jerome C, Detrembleur C (2015) Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances. Polymer 59:117–123

    CAS  Google Scholar 

  129. Lan Y, Liu H, Cao X, Zhao S, Dai K, Yan X, Zheng G, Liu C, Shen C, Guo Z (2016) Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97:11–19

    CAS  Google Scholar 

  130. Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q, Wei S, Guo Z (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327

    CAS  Google Scholar 

  131. Laird ED, Li CY (2013) Structure and morphology control in crystalline polymer-carbon nanotube nanocomposites. Macromolecules 46(8):2877–2891

    CAS  Google Scholar 

  132. Quan H, Zhang S-J, Qiao J-L, Zhang L-Y (2012) The electrical properties and crystallization of stereocomplex poly (lactic acid) filled with carbon nanotubes. Polymer 53(20):4547–4552

    CAS  Google Scholar 

  133. Kazemi Y, Kakroodi AR, Wang S, Ameli A, Filleter T, Poetschke P, Park CB (2017) Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer 129:179–188

    CAS  Google Scholar 

  134. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27(3):504–509

    CAS  Google Scholar 

  135. Mi H-Y, Salick MR, Jing X, Jacques BR, Crone WC, Peng X-F, Turng L-S (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C-Mater Biological Appl 33(8):4767–4776

    CAS  Google Scholar 

  136. Scaffaro R, Lopresti F, Botta L, Rigogliuso S, Ghersi G (2016) Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. J Mech Behav Biomed Mater 63:303–313

    CAS  Google Scholar 

  137. Patra S, Remy M, Ray AR, Brouillaud B, Amedee J, Gupta B, Bordenave L (2013) A novel route to polycaprolactone scaffold for vascular tissue engineering. J Biomater Tissue Eng 3(3):289–299

    CAS  Google Scholar 

  138. Bonfield W (2006) Designing porous scaffolds for tissue engineering. Philos Trans 364(1838):227

    CAS  Google Scholar 

  139. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55(12):1613–1629

    CAS  Google Scholar 

  140. Li C, Wang L, Yang Z, Kim G, Chen H, Ge Z (2012) A viscoelastic chitosan-modified three-dimensional porous Poly(L-Lactide-co-epsilon-Caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci-Polym Ed 23(1–4):405–424

    Google Scholar 

  141. Saini P, Arora M, Kumar MNVR (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59

    CAS  Google Scholar 

  142. Mi H-Y, Jing X, Turng L.-S, Peng X-F (2014) Microcellular injection molding and particulate leaching of thermoplastic polyurethane (TPU) scaffolds. In: V. Alstadt (Ed.), Proceedings of Pps-29: the 29th International conference of the polymer - conference papers 2014, vol 1593. p. 392–396

  143. Scaffaro R, Lopresti F, Botta L, Maio A (2016) Mechanical behavior of polylactic acid/polycaprolactone porous layered functional composites. Compos Part B-Eng 98:70–77

    CAS  Google Scholar 

  144. Kramschuster A, Turng L-S (2010) An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res Part B-Appl Biomater 92B(2):366–376

    CAS  Google Scholar 

  145. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    CAS  Google Scholar 

  146. Hua-Mo Y, Jing Q, Jin Z, Zai-Fu L, Jian-Shu L, Jia-Zhuang X, Zhong-Ming L (2016) Engineering porous poly(lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers 8(6):213

    Google Scholar 

  147. Cui Z, Nelson B, Peng Y, Li K, Pilla S, Li W-J, Turng L-S, Shen C (2012) Fabrication and characterization of injection molded poly (epsilon-caprolactone) and poly (epsilon-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Mater Sci Eng C-Mater Biol Appl 32(6):1674–1681

    CAS  Google Scholar 

  148. Allaf RM, Rivero IV, Abidi N, Ivanov IN (2013) Porous poly(epsilon-caprolactone) scaffolds for load-bearing tissue regeneration: Solventless fabrication and characterization. J Biomed Mater Res Part B-Appl Biomater 101B(6):1050–1060

    CAS  Google Scholar 

  149. Reignier JL, Huneault MA (2006) Preparation of interconnected poly(\u3b5-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47(13):4703–4717

    CAS  Google Scholar 

  150. Wang X, Salick MR, Gao Y, Jiang J, Li X, Liu F, Cordie T, Li Q, Turng L-S (2018) Interconnected porous poly(-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J Cell Plast 54(2):379–397

    CAS  Google Scholar 

  151. Li H, Zhong J, Meng J, Xian G (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos Part B-Eng 44(1):508–516

    CAS  Google Scholar 

  152. Li ZM, Li LB, Shen KZ, Wei Y, Rui H, Yang MB (2010) Transcrystalline morphology of an in situ microfibrillar poly(ethylene terephthalate)/Poly(propylene) blend fabricated through a slit extrusion hot stretching-quenching process. Macromol Rapid Commun 25(4):553–558

    Google Scholar 

  153. Al-Majed AA, Adebayo AR, Hossain ME (2012) A sustainable approach to controlling oil spills. J Environ Manag 113:213–227

    Google Scholar 

  154. Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays–implications for oil spill remediation. J Colloid Interface Sci 305(1):17–24

    CAS  Google Scholar 

  155. Cao S, Dong T, Xu G, Wang F (2018) Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environ Technol 39(14):1833–1840

    CAS  Google Scholar 

  156. Annunciado TR, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50(11):1340–1346

    CAS  Google Scholar 

  157. Husseien M, Amer AA, El-Maghraby A, Taha NA (2009) Availability of barley straw application on oil spill clean up. Int J Environ Sci Technol 6(1):123–130

    CAS  Google Scholar 

  158. Wang X, Pan Y, Liu X, Liu H, Li N, Liu C, Schubert DW, Shen C (2019) Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl Mater Interfaces 11(15):14362–14367

    CAS  Google Scholar 

  159. Kuang J, Liu L, Gao Y, Zhou D, Chen Z, Han B, Zhang Z (2013) A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5(24):12171–12177

    CAS  Google Scholar 

  160. Roberts AD, Wang S, Li X, Zhang H (2014) Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A 2(42):17787–17796

    CAS  Google Scholar 

  161. Liu Y, Huang G, Gao C, Zhang L, Chen M, Xu X, Gao J, Pan C, Yang N, Liu Y (2015) Biodegradable polylactic acid porous monoliths as effective oil sorbents. Compos Sci Technol 118:9–15

    CAS  Google Scholar 

  162. Ruan C, Ai K, Li X, Lu L (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed Engl 53(22):5556–5560

    CAS  Google Scholar 

  163. Mi H-Y, Jing X, Huang H-X, Turng L-S (2017) Controlling superwettability by microstructure and surface energy manipulation on three-dimensional substrates for versatile gravity-driven oil/water separation. ACS Appl Mater Interfaces 9(43):37529–37535

    CAS  Google Scholar 

  164. Sun S, Zhu L, Liu X, Wu L, Dai K, Liu C, Shen C, Guo X, Zheng G, Guo Z (2018) Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties. Acs Sustain Chem Eng 6(8):9866–9875

    CAS  Google Scholar 

  165. Wang J-C, Lou H, Cui Z-H, Hou Y, Li Y, Zhang Y, Jiang K, Shi W, Qu L (2019) Fabrication of porous polyacrylamide/polystyrene fibrous membranes for efficient oil-water separation. Sep Purif Technol 222:278–283

    CAS  Google Scholar 

  166. Wang Y, Wang B, Wang J, Ren Y, Xuan C, Liu C, Shen C (2018) Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. J Hazard Mater 344:849–856

    CAS  Google Scholar 

  167. Rizvi A, Chu RKM, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Interfaces 6(23):21131–21140

    CAS  Google Scholar 

  168. Yin G, Zhao D, Zhang L, Ren Y, Ji S, Tang H, Zhou Z, Li Q (2016) Highly porous 3D PLLA materials composed of nanosheets, fibrous nanosheets, or nanofibrous networks: preparation and the potential application in oil-water separation. Chem Eng J 302:1–11

    CAS  Google Scholar 

  169. Zeng X, Qian L, Yuan X, Zhou C, Li Z, Cheng J, Xu S, Wang S, Pi P, Wen X (2017) Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 11(1):760

    CAS  Google Scholar 

  170. Huang P, Wu F, Shen B, Ma X, Zhao Y, Wu M, Wang J, Liu Z, Luo H, Zheng W (2019) Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chem Eng J 370:1322–1330

    CAS  Google Scholar 

  171. Wu Q, Hu J (2016) Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos Part B-Eng 107:59–66

    CAS  Google Scholar 

  172. Lee KS, Shim J, Park M, Kim HY, Son DI (2017) Transparent nanofiber textiles with intercalated ZnO@graphene QD LEDs for wearable electronics. Compos Part B-Eng 130:70–75

    CAS  Google Scholar 

  173. Khan MO, Leung SN, Chan E, Naguib HE, Dawson F, Adinkrah V (2013) Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide based composites. Polym Eng Sci 53(11):2398–2406

    CAS  Google Scholar 

  174. Thi My Linh D, Kim C-Y, Zhang Y, Yang J-F, Masaki T, Yoon D-H (2017) Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. Compos Part B-Eng 114:237–246

    Google Scholar 

  175. Wei X, Cao X, Wang Y, Zheng G, Dai K, Liu C, Shen C (2017) Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Compos Sci Technol 149:166–177

    CAS  Google Scholar 

  176. Ding H, Guo Y, Leung SN (2016) Development of thermally conductive polymer matrix composites by foaming-assisted networking of micron- and submicron-scale hexagonal boron nitride. J Appl Polym Sci 11(1):106

    Google Scholar 

  177. Leung SN, Khan MO, Chan E, Naguib HE, Dawson F, Adinkrah V, Lakatos-Hayward L (2013) Synergistic effects of hybrid fillers on the development of thermally conductive polyphenylene sulfide composites. J Appl Polym Sci 127(5):3293–3301

    CAS  Google Scholar 

  178. Gong X, Guo C, Xuan S, Liu T, Zong L, Peng C (2012) Oscillatory normal forces of magnetorheological fluids. Soft Matter 8(19):5256–5261

    CAS  Google Scholar 

  179. Yuan F, Jiao W, Yang F, Liu W, Xu Z, Wang R (2017) Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Adv 7(69):43380–43389

    CAS  Google Scholar 

  180. Chung J-Y, Lee J-G, Baek Y-K, Shin P-W, Kim Y-K (2018) Magnetic field-induced enhancement of thermal conductivities in polymer composites by linear clustering of spherical particles. Compos Part B-Eng 136:215–221

    CAS  Google Scholar 

  181. Guo C, Gong X, Xuan S, Zong L, Peng C (2012) Normal forces of magnetorheological fluids under oscillatory shear. J Magn Magn Mater 324(6):1218–1224

    CAS  Google Scholar 

  182. Oguro T, Endo H, Kawai M, Mitsumata T (2017) Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam. Mater Res Express 4(12):126104–126111

    Google Scholar 

  183. Sorrentino L, Aurilia M, Forte G, Iannace S (2008) Composite polymeric foams produced by using magnetic field. Adv Sci Technol 54:123–126

    CAS  Google Scholar 

  184. Volpe V, D’Auria M, Sorrentino L, Davino D, Pantani R (2018) Magneto-mechanical behavior of elastomeric carbonyl iron particles composite foams produced by foam injection molding. J Magn Magn Mater 466:44–54

    CAS  Google Scholar 

  185. Chan BQ, Low ZW, Heng SJ, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8(16):10070–10087

    CAS  Google Scholar 

  186. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12(9):1156–1171

    CAS  Google Scholar 

  187. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001–023022

    CAS  Google Scholar 

  188. Barmouz M, Behravesh AH (2019) The role of foaming process on shape memory behavior of polylactic acid-thermoplastic polyurethane-nano cellulose bio-nanocomposites. J Mech Behav Biomed Mater 91:266–277

    CAS  Google Scholar 

  189. Keramati M, Ghasemi I, Karrabi M, Azizi H, Sabzi M (2016) Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite. Fibers Polym 17(7):1062–1068

    CAS  Google Scholar 

  190. Barmouz M, Behravesh AH (2017) Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: analytical and experimental assessment. Compos Part a-Appl Sci Manuf 101:160–172

    CAS  Google Scholar 

  191. Ji G, Zhai W, Lin D, Ren Q, Zheng W, Jung DW (2013) Microcellular foaming of Poly(lactic acid)/silica nanocomposites in compressed CO2: critical influence of crystallite size on cell morphology and foam expansion. Ind Eng Chem Res 52(19):6390–6398

    CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Key Research and Development Program of China (2020YFB1506102), and the Fundamental Research Funds for the Central Universities (XK1802-3,2312017BHYC04A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengcheng Xie or Lih-Sheng Turng.

Ethics declarations

Conflict of interest

None of the authors have any financial or scientific conflicts of interest with regard to the manuscript, and all the co-authors have approved this submission.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 29610 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Xie, P., Yang, H. et al. A review of thermoplastic polymer foams for functional applications. J Mater Sci 56, 11579–11604 (2021). https://doi.org/10.1007/s10853-021-06034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06034-6