Skip to main content
Log in

Preparation of a novel poly (ether ether ketone) self-reinforced paper appropriate for harsh conditions

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It remains a challenge to prepare special engineering paper with excellent mechanical properties, high temperature resistance and chemical resistance. The emergence of high-performance fiber provides support for the technical progress of special engineering paper. Herein, a novel method to obtain a novel self-reinforced poly (ether ether ketone) (PEEK) composite paper (SR-DI-PEEK/paper) by vacuum filtration, impregnation and hot pressing. Specially, PEEK fibers were used as the skeleton fiber and a small amount of aramid pulp was added as the decanted fiber. By optimizing the process of SR-DI-PEEK/paper preparation, the best mechanical properties of SR-DI-PEEK/paper was presented. Compared with the composite paper prepared with Phenolic solution (PF-PEEK/paper) and Polyimide solution (PI-PEEK/paper), the mechanical properties of SR-DI-PEEK/paper was significantly improved. In particular, when the concentration of impregnation was 3 wt%, the tensile index of SR-DI-PEEK/paper reached 51.10 N m g−1 (tensile strength 47.16 kN m−1), which is 16.48 times than that of the un-impregnated PEEK/paper (2.86 kN m−1). SR-DI-PEEK/paper also exhibited excellent chemical resistance among acid, alkali, and polar solvents, while the tensile index maintained 96.3% after 40 wt% H2SO4 treatment. Besides, SR-DI-PEEK/paper showed superior thermal performance, while the temperatures corresponding to the weight loss of 5% were 574 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Vijayan R, Krishnamoorthy A (2019) Review on natural fiber reinforced composites. Mater Today Proc 16:897–906. https://doi.org/10.1016/j.matpr.2019.05.175

    Article  Google Scholar 

  2. Zhou YF, Sun ZH, Jiang L, Chen SJ, Ma JW, Zhou FL (2020) Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Appl Surf Sci 533:147431. https://doi.org/10.1016/j.apsusc.2020.147431

    Article  CAS  Google Scholar 

  3. Anderson R, Guan J, Ricard M, Dubey G, Su J, Lopinski G, Dorris G, Simard BO, B, (2010) Multifunctional single-walled carbon nanotube-cellulose composite paper. J Mater Chem 20:2400–2407. https://doi.org/10.1039/B924260K

    Article  CAS  Google Scholar 

  4. Bhatia A (1995) Aramid papers with improved dimensional stability. In: Proceedings of the electrical/electronics insulation conference 409–410

  5. Ramachandhran V, Misra B, Ramani M (1990) Poly (m-Phenylene Isophthalamide) membranes for reverse osmosis separations. Int J Polym Mater 14:157–163. https://doi.org/10.1080/00914039008031511

    Article  CAS  Google Scholar 

  6. Ling XX, Long Z, Wang SH, Li ZQ, Guo S, Zhang D (2020) Surface Modified aramid pulp with polyaniline and conductivity of its paper-based materials. Chem J Chin Univ Chin 41:2553–2560. https://doi.org/10.7503/cjcu20200317

    Article  Google Scholar 

  7. Yao LR, Zhao WT, Xu SQ, Sum QL (2013) The preparation of aramid paper and its properties. Adv Mater Res 796:290–293

    Article  Google Scholar 

  8. Dong LY, Hu CG, Song L, Huang XK, Chen N, Qu LT (2016) A large-area, flexible, and flame-retardant graphene paper. Adv Funct Mater 26:1470–1476. https://doi.org/10.1002/adfm.201504470

    Article  CAS  Google Scholar 

  9. Anderson RE, Guan JW, Ricard M, Dubey G, Su J, Lopinski G, Dorris G, Bourne O, Simard B (2010) Multifunctional single-walled carbon nanotube-cellulose composite paper. J Mater Chem 20:2400–2407. https://doi.org/10.1039/B924260K

    Article  CAS  Google Scholar 

  10. McDaniel R (2015) Fiber additives in asphalt mixtures: Report to American association of state highway and transportation official

  11. Yang B, Wang L, Zhang M, Luo J, Zhaoqing Lu, Ding X (2020) Fabrication, applications, and prospects of aramid nanofiber. Adv Funct Mater 30:200186. https://doi.org/10.1002/adfm.202000186

    Article  CAS  Google Scholar 

  12. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perform Polym 15:3–45. https://doi.org/10.1177/095400830301500101

    Article  CAS  Google Scholar 

  13. Rose J (1986) Discovery and development of the “Victrex” Polyaryletherketone PEEK. High performance polymers: their origin and development. Springer, New York, pp 187–193

    Chapter  Google Scholar 

  14. Luan JS, Zhang SL, Zhang M, Geng Z, Wang Y, Wang GB (2013) Preparation and characterization of high-performance poly (ether ether ketone) fibers with improved spinnability based on thermotropic liquid crystalline poly (aryl ether ketone) copolymer. J Appl Polym Sci 130:1406–1414. https://doi.org/10.1002/app.39319

    Article  CAS  Google Scholar 

  15. Liang Q, Wu X (2014) Research status of carbon fibre-reinforced PEEK composites. Adv Mater Res 834:225–258

    Google Scholar 

  16. Panayotov I, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci: Mater Med 27:118. https://doi.org/10.1007/s10856-016-5731-4

    Article  CAS  Google Scholar 

  17. Buggy M, Carew A (1994) The effect of thermal ageing on carbon fibre-reinforced polyetheretherketone (PEEK). J Mater Sci 29:2255–2259. https://doi.org/10.1007/BF01154707

    Article  CAS  Google Scholar 

  18. Sasuga T, Hagiwara M (1987) Radiation deterioration of several aromatic polymers under oxidative conditions. Polymer 28:1915–1921. https://doi.org/10.1016/0032-3861(87)90300-4

    Article  CAS  Google Scholar 

  19. Vaughan AS, Stevens GC (1995) On crystallization morphology and radiation effects in poly(ether ether ketone). Polymer 36:1531–1540

    Article  CAS  Google Scholar 

  20. Goyal RK, Tiwari AN, Negi YS (2008) High performance nanocomposites for tribological applications: preparation and characterization. Mater Sci Eng, A 486:602–610. https://doi.org/10.1016/j.msea.2007.09.047

    Article  CAS  Google Scholar 

  21. Sandler J, Windle AH, Werner P, Altstadt V, Es WV, Shaffer MSP (2003) Carbon-nanofibre-reinforced poly(ether ether ketone) fibres. J Mater Sci 38:2135–2141. https://doi.org/10.1023/A:1023715811817

    Article  CAS  Google Scholar 

  22. Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90:185–195. https://doi.org/10.1016/j.matchemphys.2004.10.009

    Article  CAS  Google Scholar 

  23. Macosko C (1994) Rheology: principles, measurements, and application. Wiley, New York 2:73–79

    Google Scholar 

  24. Ma G, Yue XG, Zhang SL, Rong CR, Wang LF, Wang GB (2011) Effect of addition of silane coupling agents on the properties of wollastonite-reinforced poly (ether ether ketone) composites. Polym Eng Sci 51:1051–1058. https://doi.org/10.1002/pen.21925

    Article  CAS  Google Scholar 

  25. Pandya A, Yang J, Gibson H (1994) A new polyketone synthesis involving nucleophilic substitution via carbanions Derived from bis(α-aminonitriles). 1. Semicrystalline poly (arylene ketone sulfones). Macromolecules 27:1367–1375. https://doi.org/10.1021/ma00084a014

    Article  CAS  Google Scholar 

  26. Colquhoun HM, Paoloni FPV, Drew MGB, Hodge P (2007) Dithioacetalisation of PEEK: a general technique for the solubilisation and characterisation of semi-crystalline aromatic polyketones. Chem Commun 2007:3365–3367. https://doi.org/10.1039/b708116b

    Article  CAS  Google Scholar 

  27. Colquhoun HM, Hodge P, Paoloni FPV, McGrail PT, Cross P (2009) Reversible, nondegradative conversion of crystalline aromatic poly (ether ketone)s into organo-soluble poly (ether dithioketal)s. Macromolecules 42:1955–1963. https://doi.org/10.1021/ma8023377

    Article  CAS  Google Scholar 

  28. Corey EJ, Andersen NH, Carlson RM, Paust J, Vedejs E, Vlattas I, Winter RE (1968) Total synthesis of prostaglandins. synthesis of the Pure dl-E1, -F, -F -A1 and -B1 hormones. J Am Chem Soc 90:3245–3247. https://doi.org/10.1021/ja01014a053

    Article  CAS  Google Scholar 

  29. Karimi B, Seradj H, Maleki J (2002) Highly efficient and chemoselective interchange of 1,3-oxathioacetals and dithioacetals to acetals promoted by N-halosuccinimide. Tetrahedron 58:4513–4516. https://doi.org/10.1016/S0040-4020(02)00389-7

    Article  CAS  Google Scholar 

  30. Manolakis I, Cross P, Colquhoun H (2017) Exchange reactions of poly (arylene ether ketone) dithioketals with aliphatic diols: formation and deprotection of poly(arylene ether ketal)s. Macromolecules 50:9561–9568. https://doi.org/10.1021/acs.macromol.7b02203

    Article  CAS  Google Scholar 

  31. Zhao HF, Zhang MY, Zhang SF, Lu JB (2012) Influence of fiber characteristics and manufacturing process on the structure and properties of aramid paper. Polym Plast Technol Eng 51:134–139. https://doi.org/10.1080/03602559.2011.618161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Industrial Technology Research and Development Project of Jilin Province (2020C024-3). The National Natural Science Foundation of China (No. 22075096), Jilin Province and Jilin Provincial Science and Technology Development Project of China(20200801003GH) and the foundation of Scholars of Changbai Mountain, Jilin Province.

Author information

Authors and Affiliations

Authors

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, X., Ren, J., Xiang, C. et al. Preparation of a novel poly (ether ether ketone) self-reinforced paper appropriate for harsh conditions. J Mater Sci 56, 11174–11185 (2021). https://doi.org/10.1007/s10853-021-05990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05990-3

Navigation