Skip to main content
Log in

Multifunctional donor–acceptor conjugated polymers containing isoindigo and benzothiadiazole moieties for electrochromic, photoelectric sensor, 2,4,6-trinitrophenol detection and resistance memory device

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Six novel donor–acceptor conjugated polymers were designed and synthesized by the Stille coupling reaction of triarylamine derivatives as donor units with isoindigo derivative or benzothiadiazole as acceptor units. These polymers have good solubility and film-forming properties in common organic solvents. The char yields of polymers in nitrogen atmosphere at 800 °C range from 34 to 60%. In particular, these conjugated polymers exhibit high photoluminescence (PL) quantum efficiency (up to 42.9%). These polymers demonstrate two pairs of redox peaks with low onset voltages (0.51 V vs. Ag/AgCl for P5) and narrow band gaps (Eg = 2.52 ~ 2.95 eV). The colors of all polymer films change significantly with the applied voltage increasing. Moreover, the polymers show high coloring efficiency (up to 163%) and maintain good electrochromic (EC) cycle stability over 500 s. In addition, excellent results in terms of memory storage (ON/OFF = 1.2 × 104), 2,4,6-Trinitrophenol (TNP) detection (Ksv = 45,790 M-1) can meet the requirements of multifunctional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang M, Xing X, Perepichka IF, Shi Y, Zhou D, Wu P, Meng H (2019) Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv Energy Mater 9:1900433. https://doi.org/10.1002/aenm.201900433

    Article  CAS  Google Scholar 

  2. Kim J-W, Kwon D-K, Myoung J-M (2020) Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability. Chem Eng J 387:124145. https://doi.org/10.1016/j.cej.2020.124145

    Article  CAS  Google Scholar 

  3. Zhang T, Sheng L, Liu J et al (2018) Photoinduced proton transfer between photoacid and pH-sensitive dyes: influence factors and application for visible-light-responsive rewritable paper. Adv Funct Mater 28:1705532. https://doi.org/10.1002/adfm.201705532

    Article  CAS  Google Scholar 

  4. Nie G, Wang L, Liu C (2015) High performance electrochromic devices based on a polyindole derivative, poly(1H-benzo[g]indole). J Mater Chem C 3:11318–11325. https://doi.org/10.1039/c5tc02308d

    Article  CAS  Google Scholar 

  5. Neo WT, Ye Q, Chua S-J, Xu J (2016) Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J Mater Chem C 4:7364–7376. https://doi.org/10.1039/c6tc01150k

    Article  CAS  Google Scholar 

  6. Zheng R, Zhang J, Jia C, Wan Z, Fan Y, Weng X, Xie J, Deng L (2017) A novel self-healing electrochromic film based on a triphenylamine cross-linked polymer. Polym Chem 8:6981–6988. https://doi.org/10.1039/C7PY01434A

    Article  CAS  Google Scholar 

  7. Sun N, Meng S, Zhou Z et al (2017) Electroactive (A3+B2)-type hyperbranched polyimides with highly stable and multistage electrochromic behaviors. Electrochimi Acta 256:119–128. https://doi.org/10.1016/j.electacta.2017.10.036

    Article  CAS  Google Scholar 

  8. Liu X, Kong L, Du H, Zhang Y, Zhao J, Xie Y (2019) Synthesis and electrochromic properties of electrochromic polymers based on propylenedioxythiophene, diketopyrrolopyrrole and benzodithiophene units. Org Electron 64:223–235. https://doi.org/10.1016/j.orgel.2018.10.035

    Article  CAS  Google Scholar 

  9. Du Q, Wei Y, Zheng J, Xu C (2014) Donor-π-bridge-acceptor type polymeric materials with pendant electron-withdrawing groups for electrochromic applications. Electrochimi Acta 132:258–264. https://doi.org/10.1016/j.electacta.2014.03.172

    Article  CAS  Google Scholar 

  10. Lo CK, Shen DE, Reynolds JR (2019) Fine-tuning the color hue of π-conjugated black-to-clear electrochromic random copolymers. Macromolecules 52:6773–6779. https://doi.org/10.1021/acs.macromol.9b01443

    Article  CAS  Google Scholar 

  11. Teran NB, Reynolds JR (2017) Discrete donor–acceptor conjugated systems in neutral and oxidized states: implications toward molecular design for high contrast electrochromics. Chem Mater 29:1290–1301. https://doi.org/10.1021/acs.chemmater.6b04725

    Article  CAS  Google Scholar 

  12. Zhang Y, Shen P, He B, Luo W, Zhao Z, Tang BZ (2018) New fluorescent through-space conjugated polymers: synthesis, optical properties and explosive detection. Polym Chem 9:558–564. https://doi.org/10.1039/C7PY01700F

    Article  CAS  Google Scholar 

  13. Zhuang Y, Yao J, Zhuang Z, Ni C, Yao H, Su D, Zhou J, Zhao Z (2019) AEE-active conjugated polymers based on di(naphthalen-2-yl)-1,2-diphenylethene for sensitive fluorescence detection of picric acid. Dyes Pigm 174:108041. https://doi.org/10.1016/j.dyepig.2019.108041

    Article  CAS  Google Scholar 

  14. Arunagirinathan RN, Gopikrishna P, Das D, Iyer PK (2019) Solution processed donor-acceptor polymer based electrical memory device with high on/off ratio and tunable properties, ACS appl. Electron Mater 1:600–607. https://doi.org/10.1021/acsaelm.9b00077

    Article  CAS  Google Scholar 

  15. Cai Y, Shi C, Zhang H et al (2018) Sulfur-bridged tetraphenylethylene AIEgens for deep-blue organic light-emitting diodes. J Mater Chem C 6:6534–6542. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  16. Cheng S-W, Chang Chien Y-H, Huang T-Y, Liu C-L, Liou G-S (2018) Linkage effects of triphenylamine-based aromatic polymer electrets on electrical memory performance. Polymer 148:382–389. https://doi.org/10.1016/j.polymer.2018.06.040

    Article  CAS  Google Scholar 

  17. Chen S, Pei J, Pang Z, Wu W, Yu X, Zhang C (2019) Axial-symmetric conjugated group promoting intramolecular charge transfer performances of triphenylamine sensitizers for dye-sensitized solar cells. Dyes Pigm 174:108029. https://doi.org/10.1016/j.dyepig.2019.108029

    Article  CAS  Google Scholar 

  18. Wang Y, Niu H, Lu Q, Zhang W, Qiao X, Niu H, Zhang Y, Wang W (2020) From aerospace to screen: multifunctional poly(benzoxazine)s based on different triarylamines for electrochromic, explosive detection and resistance memory devices. Spectrochim Acta A Mol Biomol Spectrosc 225:117524. https://doi.org/10.1016/j.saa.2019.117524

    Article  CAS  Google Scholar 

  19. Neo WT, Ye Q, Chua MH, Zhu Q, Xu J (2020) Solution-processable copolymers based on triphenylamine and 3,4-ethylenedioxythiophene: facile synthesis and multielectrochromism. Macromol Rapid Commun 41:2000156. https://doi.org/10.1002/marc.202000156

    Article  CAS  Google Scholar 

  20. Zhang Q, Tsai C-Y, Abidin T, Jiang J-C, Shie W-R, Li L-J, Liaw D-J (2018) Transmissive-to-black fast electrochromic switching from a long conjugated pendant group and a highly dispersed polymer/SWNT. Polym Chem 9:619–626. https://doi.org/10.1039/c7py01863k

    Article  CAS  Google Scholar 

  21. Wu J-T, Hsiang T-L, Liou G-S (2018) Synthesis and optical properties of redox-active triphenylamine-based derivatives with methoxy protecting groups. J Mater Chem C 6:13345–13351. https://doi.org/10.1039/c8tc05196h

    Article  CAS  Google Scholar 

  22. Yen H-J, Liou G-S (2018) Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym Chem 9:3001–3018. https://doi.org/10.1039/C8PY00367J

    Article  CAS  Google Scholar 

  23. Wu J-T, Fan Y-Z, Liou G-S (2019) Synthesis, characterization and electrochromic properties of novel redox triarylamine-based aromatic polyethers with methoxy protecting groups. Polym Chem 10:345–350. https://doi.org/10.1039/C8PY01308J

    Article  CAS  Google Scholar 

  24. Hsiao S-H, Chen Y-Z (2018) Electrosynthesis of redox-active and electrochromic polymer films from triphenylamine-cored star-shaped molecules end-capped with arylamine groups. Eur Polym J 99:422–436. https://doi.org/10.1016/j.eurpolymj.2018.01.001

    Article  CAS  Google Scholar 

  25. Lu CF, Shih CW, Chen CA, Chin A, Su W-F (2018) Tuning the morphology of isoindigo donor–acceptor polymer film for high sensitivity ammonia sensor. Adv Funct Mater 28:1803145. https://doi.org/10.1002/adfm.201803145

    Article  CAS  Google Scholar 

  26. Xie H, Wang M, Kong L, Zhang Y, Ju X, Zhao J (2017) The optimization of donor-to-acceptor feed ratios with the aim of obtaining black-to-transmissive switching polymers based on isoindigo as the electron-deficient moiety. RSC Adv 7:11840–11851. https://doi.org/10.1039/C6RA28865Kaf

    Article  CAS  Google Scholar 

  27. Chua MH, Zhu Q, Tang T, Shah KW, Xu J (2019) Diversity of electron acceptor groups in donor–acceptor type electrochromic conjugated polymers. Sol Energy Mater Sol Cells 197:32–75. https://doi.org/10.1016/j.solmat.2019.04.002

    Article  CAS  Google Scholar 

  28. Abdo NI, Ku J, El-Shehawy AA, Shim H-S, Min J-K, El-Barbary AA, Jang YH, Lee J-S (2013) Synthesis and characterization of low bandgap π-conjugated copolymers incorporating 4,7-bis(3,3′/4,4′-hexylthiophene-2-yl)benzo[c][2,1,3] thiadiazole units for photovoltaic application. J Mater Chem A 1:10306–10307. https://doi.org/10.1039/c3ta11433c

    Article  CAS  Google Scholar 

  29. Zhang Y, Chen S, Zhang Y, Du H, Zhao J (2019) Design and characterization of new D-A type electrochromic conjugated copolymers based on indolo[3,2-b] carbazole, isoindigo and thiophene units. Polymers 11:1626. https://doi.org/10.3390/polym11101626

    Article  CAS  Google Scholar 

  30. Lu Q, Zhang X, Cai W et al (2019) Donor−acceptor conjugated polymers containing isoindigo block for novel multifunctional materials for electrochromic, resistance memory, and detector device. Sol Energy Mater Sol Cells 200:109979. https://doi.org/10.1016/j.solmat.2019.109979

    Article  CAS  Google Scholar 

  31. Zhao Z, Wang Z, Ge C, Zhang X, Yang X, Gao X (2016) Incorporation of benzothiadiazole into the backbone of 1,2,5,6-naphthalenediimide based copolymers, enabling much improved film crystallinity and charge carrier mobility. Polym Chem 7:573–579. https://doi.org/10.1039/C5PY01709B

    Article  CAS  Google Scholar 

  32. Sendura M, Balan A, Baran D, Karabay B, Toppare L (2010) Combination of donor characters in a donor–acceptor–donor (DAD) type polymer containing benzothiadiazole as the acceptor unit. Org Electron 11:1877–1885. https://doi.org/10.1016/j.orgel.2010.09.001

    Article  CAS  Google Scholar 

  33. Zhao N, Ai N, Cai M, Wang X, Pei J, Wan X (2016) Thiophene-fused isoindigo based conjugated polymers for ambipolar organic field-effect transistors. Polym Chem 7:235–243. https://doi.org/10.1039/c5py01488c

    Article  CAS  Google Scholar 

  34. Zhang M, Zeng M, Chen H, Li L, Zhao B, Tan S (2020) A2-D-A1-D-A2-type small molecule acceptors incorporated with electron-deficient core for non-fullerene organic solar cells. Sol Energy Mater Sol Cells 197:511–518. https://doi.org/10.1016/j.solener.2020.01.032

    Article  CAS  Google Scholar 

  35. Pathak A, Tomer T, Thomas KRJ, Fan M-S, Ho K-C (2019) Fine tuning the absorption and photovoltaic properties of benzothiadiazole dyes by donor-acceptor interaction alternation via methyl position. Electrochimi Acta 304:1–10. https://doi.org/10.1016/j.electacta.2019.02.077

    Article  CAS  Google Scholar 

  36. Xiong K, Hou L, Wu M et al (2015) From spin coating to doctor blading: a systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol Energy Mater Sol Cells 132:252–259. https://doi.org/10.1016/j.solmat.2014.08.039

    Article  CAS  Google Scholar 

  37. Yang C, Cai W, Zhang X et al (2019) Multifunctional conjugated oligomers containing novel triarylamine and fluorene units with electrochromic, electrofluorochromic, photoelectron conversion, explosive detection and memory properties. Dyes Pigm 160:99–108. https://doi.org/10.1016/j.dyepig.2018.07.043

    Article  CAS  Google Scholar 

  38. Lu Q, Cai W, Zhang X, Yang C, Ge H, Chen Y, Niu H, Wang W (2018) Multifunctional polymers for electrochromic, memory device, explosive detection and photodetector: donor-acceptor conjugated isoindigo derivatives with strong fluorescence. Eur Polym J 108:124–137. https://doi.org/10.1016/j.eurpolymj.2018.08.042

    Article  CAS  Google Scholar 

  39. Chen W-H, Wang K-L, Hung W-Y, Jiang J-C, Liaw D-J, Lee K-R, Lai J-Y, Chen C-L (2010) Novel triarylamine-based alternating conjugated polymer with high hole mobility: synthesis, electro-optical, and electronic properties. J Polym Sci Part A Polym Chem 48:4654–4667. https://doi.org/10.1002/pola.24252

    Article  CAS  Google Scholar 

  40. Hu R, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43:4494–4562. https://doi.org/10.1039/c4cs00044g

    Article  CAS  Google Scholar 

  41. Chen Y, Lu Q, Gao L et al (2018) Synthesis and optoelectronic properties of novel alternate copolymers based on diketopyrrolopyrrole and triarylamine units spaced by flexible chain. J Electroanal Chem 829:217–229. https://doi.org/10.1016/j.jelechem.2018.10.008

    Article  CAS  Google Scholar 

  42. Chen W-H, Wang K-L, Liaw D-J, Lee K-R, Lai J-Y (2010) N, N, N’, N’- Tetraphenyl-1,4-phenylenediamine-fluorene alternating conjugated polymer: synthesis, characterization, and electrochromic application. Macromolecules 43:2236–2243. https://doi.org/10.1021/ma902138g

    Article  CAS  Google Scholar 

  43. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  44. Xu Z, Zhang Y, Wang B, Liu Z, Zhao J, Xie Y (2019) Yellow-to-blue switching of indole[3,2-b]carbazole-based electrochromic polymers and the corresponding electrochromic devices with outstanding photopic contrast, fast switching speed, and satisfactory cycling stability. Electrochim Acta 302:373–384. https://doi.org/10.1016/j.electacta.2019.02.054

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  46. Zhang X, Lu Q, Yang C et al (2019) Multifunctional polyurethanes synthesized from different triarylamine units with electrochromic, photogeneration, memory storage and sensing properties. New J Chem 43:1177–1185. https://doi.org/10.1039/c8nj05159c

    Article  CAS  Google Scholar 

  47. Cai S, Wang S, Wei D, Niu H, Wang W, Bai X (2018) Multifunctional polyamides containing pyrrole unit with different triarylamine units owning electrochromic, electrofluorochromic and photoelectron conversion properties. J Electroanal Chem 812:132–142. https://doi.org/10.1016/j.jelechem.2018.01.039

    Article  CAS  Google Scholar 

  48. Sun X, He J, Meng Y et al (2016) Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: preparation, characterization and their application for the highly selective detection of explosive picric acid†. J Mater Chem A 4:4161–4171. https://doi.org/10.1039/c5ta10027e

    Article  CAS  Google Scholar 

  49. Tian X, Qi X, Liu X, Zhang Q (2016) Selective detection of picric acid by a fluorescent ionic liquid chemosensor. Sens Actuators B 229:520–527. https://doi.org/10.1016/j.snb.2016.02.016

    Article  CAS  Google Scholar 

  50. Luo Z, Liu B, Si S, Lin Y, Luo CS, Pan C, Zhao C, Wang L (2017) A fluorescent chemosensor based on nonplanar donor-acceptor structure for highly sensitive and selective detection of picric acid in water. Dyes Pigm 143:463–469. https://doi.org/10.1016/j.dyepig.2017.05.002

    Article  CAS  Google Scholar 

  51. Yamaguchi S, Swager TM (2001) Oxidative cyclization of bis(biaryl)acetylenes: synthesis and photophysics of dibenzo [g, p] chrysene-based fluorescent polymers. J Am Chem Soc 123:12087–12088. https://doi.org/10.1021/ja016692o

    Article  CAS  Google Scholar 

  52. Zhou H, Chua MH, Tang BZ, Xu J (2019) Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym Chem 10:3822–3840. https://doi.org/10.1039/C9PY00322C

    Article  CAS  Google Scholar 

  53. Chua MH, Zhou H, Lin TT, Wu J, Xu JW (2017) Aggregation-induced emission active 3,6-bis(1,2,2-triphenylvinyl) carbazole and bis(4-(1,2,2-triphenylvinyl)phenyl)amine-based poly(acrylates) for explosive detection. J Polym Sci Part A Polym Chem 55:672–681. https://doi.org/10.1002/pola.28382

    Article  CAS  Google Scholar 

  54. Sengottuvelu D, Kachwal V, Raichure P, Raghav T, Laskar IR (2020) Aggregation-induced enhanced emission (AIEE) active conjugated mesoporous oligomers (CMOs) with Improved quantum yield and low-cost trace nitro aromatic explosives detection. ACS Appl Mater Interfaces 12:31875–31886. https://doi.org/10.1021/acsami.0c05273

    Article  CAS  Google Scholar 

  55. Yang Q, Jiang X, Xin Y, Zhao X, Huang J, Wang S, Zheng R, Ma D, Wang C (2017) Preparation and flash memory performance based on fluorine-triphenylamine co-polymer (PF–TPA)/MWCNTs. RSC Adv 7:54431–54440. https://doi.org/10.1039/c7ra11905d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51773053, 51373049) and the Heilongjiang Province Foundation for Returners from Oversea (LC2018024)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijun Niu or Wen Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Lu, Q., Yang, C. et al. Multifunctional donor–acceptor conjugated polymers containing isoindigo and benzothiadiazole moieties for electrochromic, photoelectric sensor, 2,4,6-trinitrophenol detection and resistance memory device. J Mater Sci 56, 12001–12017 (2021). https://doi.org/10.1007/s10853-021-05952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05952-9

Navigation