Skip to main content
Log in

Multi-alloying of nanomet: conception and implementation of homogeneous nanocrystallization in high-flux density soft magnetic alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study demonstrates how multi-alloying the Fe-Si–B–P–Cu (Nanomet®) can avoid the strict requirements on the annealing scheme in terms of high heating rate and narrow annealing temperature range in order to grow a homogeneous ultrafine nanocrystalline structure. The rather restricted amorphization capability sets a low limit of the maximum thickness of the amorphous precursor. These shortcomings have their origin in the existence of detrimental pre-existing nuclei in the amorphous precursors, which in turn potentially lead to a heterogeneous crystallization. Here, we have multialloyed Nanomet with CoCNi- and CoCMo- to avoid the creation of these pre-existing nuclei. This leads to improved amorphization capability and changes a potentially heterogeneous crystallization to a homogeneous nanocrystallization over a much broader temperature range than for unalloyed Nanomet. Thus, the requirements for the annealing are much relaxed. This work encompasses quenching the amorphous precursors using melt-spinning, investigating the crystallization temperatures by calorimetry, showing the depletion of pre-existing nuclei by magneto-thermo-gravimetry, conceptualizing the crystallization dynamics using isothermal calorimetry, and finally revealing the excellent soft magnetic properties over a broad annealing temperature interval (390–490 °C for the substituted alloys compared to 410–470 °C for unalloyed Nanomet). The multi-elemental substitution of Fe with CoCMo and CoCNi in Nanomet alloy nearly maintains the saturation magnetization and the coercivity. We believe the substituted alloys provide a better alternative to Nanomet with improved amorphization capability and homogeneous nanocrystallization without any special heat treatment scheme.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Han Y, Inoue A, Kong FL, Chang CT, Shu SL, Shalaan E, Al-Marzouki F (2016) Softening and good ductility for nanocrystal-dispersed amorphous Fe–Co–B alloys with high saturation magnetization above 1.7T. J Alloys Compd 657:237–245. https://doi.org/10.1016/j.jallcom.2015.10.066

    Article  CAS  Google Scholar 

  2. Dastanpour E, Enayati MH, Ström V (2020) Non-isothermal nanocrystallization of Fe83.3Si4B8P4Cu0.7 (NANOMET®) alloy: modeling and the heating rate effect on magnetic properties. J Phys D Appl Phys 53:1–7. https://doi.org/10.1088/1361-6463/ab795d

    Article  CAS  Google Scholar 

  3. Takenaka K, Setyawan AD, Zhang Y, Sharma P, Nishiyama N, Makino A (2015) Production of nanocrystalline (Fe, Co)–Si–B–P–Cu alloy with excellent soft magnetic properties for commercial applications. Mater Trans 56:372–376. https://doi.org/10.2320/matertrans.MBW201402

    Article  CAS  Google Scholar 

  4. Liu T, Wang A, Zhao C, Yue S, Wang X, Liu CT (2019) Compositional design and crystallization mechanism of high Bs nanocrystalline alloys. Mater Res Bull 112:323–330. https://doi.org/10.1016/j.materresbull.2019.01.007

    Article  CAS  Google Scholar 

  5. Makino A, Men H, Kubota T, Yubuta K, Inoue A (2009) New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness. J Appl Phys 308:10–13. https://doi.org/10.1063/1.3058624

    Article  CAS  Google Scholar 

  6. Makino A, Men H, Kubota T, Yubuta K, Inoue A (2009) FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing hetero-amorphous phase. Mater Trans 50:204–209. https://doi.org/10.2320/matertrans.MER2008306

    Article  CAS  Google Scholar 

  7. Li W, Xie CX, Yao CL, Liu HY, Wang KW (2019) Amorphous formation and magnetic properties of Co-containing Fe–Si–B–P–Cu nanocrystalline alloys. J Non Cryst Solids 505:87–91. https://doi.org/10.1016/j.jnoncrysol.2018.10.044

    Article  CAS  Google Scholar 

  8. Takenaka K, Nishiyama N, Setyawan AD, Sharma P, Makino A (2015) Performance of a prototype power transformer constructed by nanocrystalline Fe–Co–Si–B–P–Cu soft magnetic alloys. J Appl Phys 117:1–4. https://doi.org/10.1063/1.4919041

    Article  CAS  Google Scholar 

  9. Fan X, Zhang T, Jiang M, Yang W, Shen B (2019) Synthesis of novel FeSiBPCCu alloys with high amorphous forming ability and good soft magnetic properties. J Non Cryst Solids 503–504:36–43. https://doi.org/10.1016/j.jnoncrysol.2018.09.021

    Article  CAS  Google Scholar 

  10. Dastanpour E, Enayati MH, Masood A, Ström V (2020) Quantification of the anomalous crystallization and soft magnetic properties of Fe–Si–B–P–Cu (Nanomet) by isothermal calorimetry. J Alloys Compd 830:1–7. https://doi.org/10.1016/j.jallcom.2020.154705

    Article  CAS  Google Scholar 

  11. Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high Bs and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scr Mater 95:3–6. https://doi.org/10.1016/j.scriptamat.2014.08.023

    Article  CAS  Google Scholar 

  12. Zhang Y, Sharma P, Makino A (2014) Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy. IEEE Trans Magn 50:1–4. https://doi.org/10.3969/j.issn.1672-2779.2012.08.053

    Article  Google Scholar 

  13. Jiang L, Zhang Y, Tong X, Suzuki T, Makino A (2019) Unique influence of heating rate on the magnetic softness of Fe81.5Si0.5B4.5P11Cu0.5C2 nanocrystalline alloy. J Magn Magn Mater 471:148–152. https://doi.org/10.1016/j.jmmm.2018.09.075

    Article  CAS  Google Scholar 

  14. Jia X, Li Y, Xie G, Qi T, Zhang W (2018) Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy. J Non Cryst Solids 481:590–593. https://doi.org/10.1016/j.jnoncrysol.2017.12.003

    Article  CAS  Google Scholar 

  15. Suryanarayana C, Inoue A (2010) Bulk metalic glass. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Dastanpour E, Enayati MH, Masood A, Ström V (2020) On the glass forming ability (GFA), crystallization behavior and soft magnetic properties of nanomet-substituted alloys. J Non Cryst Solids 529:1–6. https://doi.org/10.1016/j.jnoncrysol.2019.119774

    Article  CAS  Google Scholar 

  17. Lee S, Masood A, Tamaki T, Ström V, Rao KV, Makino A, Inoue A (2009) Magneto-thermo-gravimetric technique to investigate the structural and magnetic properties of Fe–B–Nb–Y bulk metallic glass. J Phys Conf Ser 144:8–12. https://doi.org/10.1088/1742-6596/144/1/012074

    Article  CAS  Google Scholar 

  18. Kuhnt M, Xu X, Amalraj M et al (2018) The effect of Co addition on magnetic and structural properties of nanocrystalline (Fe, Co)–Si–B–P–Cu alloys. J Alloys Compd 766:686–693. https://doi.org/10.1016/j.jallcom.2018.07.013

    Article  CAS  Google Scholar 

  19. Liu Q, Liu H, Wang M, Zhang Y, Ma Z, Zhao Y, Yang W (2017) Effects of Ni substitution for Fe on magnetic properties of Fe80−xNixP13C7 (x = 0 − 30) glassy ribbons. J Non Cryst Solids 463:68–71. https://doi.org/10.1016/j.jnoncrysol.2017.03.005

    Article  CAS  Google Scholar 

  20. Han Y, Ding J, Kong FL, Inoue A, Zhu SL, Wang Z, Shalaan E, Al-marzouki F (2017) FeCo-based soft magnetic alloys with high Bs approaching 1.75T and good bending ductility. J Alloys Compd 691:364–368. https://doi.org/10.1016/j.jallcom.2016.08.250

    Article  CAS  Google Scholar 

  21. Nielsen HJV (1979) Curie temperature, crystallization temperature and electrical resistivity as a function of composition for Fe80-xMoxB20 metallic glasses. Solid State Commun 30:239–242. https://doi.org/10.1016/0038-1098(79)90343-0

    Article  CAS  Google Scholar 

  22. Dastanpour E, Enayati MH, Masood A, Ström V (2021) Crystallization behavior, soft magnetism and nanoindentation of Fe–Si–B–P–Cu alloy on Ni substitution. J Alloys Compd 851:1–7. https://doi.org/10.1016/j.jallcom.2020.156727

    Article  CAS  Google Scholar 

  23. Zhao BG, Kong LH, Song TT, Zhai QJ, Gao YL (2013) Phase precipitation and isothermal crystallization kinetics of FeZrB amorphous alloy. Adv Manuf 1:251–257. https://doi.org/10.1007/s40436-013-0033-2

    Article  CAS  Google Scholar 

  24. Nagase T, Umakoshi Y, Sumida N (2002) Formation of nanocrystalline structure during electron irradiation induced crystallization in amorphous Fe–Zr–B alloys. Sci Technol Adv Mater 3:119–128. https://doi.org/10.1016/S1468-6996(02)00013-X

    Article  CAS  Google Scholar 

  25. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1106. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  26. Christian JW (1975) The theory of transformations in metals and alloys. Oxford

  27. Sun NX, Zhang K, Zhang XH, Liu XD, Lu K (1996) Nanocrytallization of amorphous Fe33Zr67 alloy. Nanostruct Mater 7:637–649. https://doi.org/10.1016/0965-9773(96)00035-9

    Article  CAS  Google Scholar 

  28. Liu T, Kong F, Xie L, Wang A, Chang C, Wang X (2017) Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83T. J Magn Magn Mater 441:174–179. https://doi.org/10.1016/j.jmmm.2017.05.072

    Article  CAS  Google Scholar 

  29. Ohnuma M, Ping DH, Abe T et al (2003) Optimization of the microstructure and properties of Co-substituted Fe–Si–B–Nb–Cu nanocrystalline soft magnetic alloys. J Appl Phys 93:9186–9194. https://doi.org/10.1063/1.1569396

    Article  CAS  Google Scholar 

  30. Lashgari HR, Chu D, Xie S, Sun H, Ferry M, Li S (2014) Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J Non Cryst Solids 391:61–82. https://doi.org/10.1016/j.jnoncrysol.2014.03.010

    Article  CAS  Google Scholar 

  31. McHenry ME, Willard MA, Laughlin DE (1999) Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44:291–433. https://doi.org/10.1016/S0079-6425(99)00002-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude towards Dr. A. Memarpour from Höganäs AB for the provision of raw materials and financial support from the Carl-Tryggers foundation. E. Dastanpour acknowledges the Iranian Ministry of Science, Research and Technology (MSRT) for the financial support for a research visit in Stockholm, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dastanpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastanpour, E., Masood, A., Enayati, M.H. et al. Multi-alloying of nanomet: conception and implementation of homogeneous nanocrystallization in high-flux density soft magnetic alloys. J Mater Sci 56, 10124–10134 (2021). https://doi.org/10.1007/s10853-021-05944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05944-9

Navigation