Skip to main content

Advertisement

Log in

Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, graphene oxide–cerium oxide (GO–CeO2) hybrids were synthesized through an in situ hydrothermal approach and were incorporated into epoxy resin to prepare a robust coating for aluminum alloy protection. The mechanical properties of the GO–CeO2-loaded coating were characterized by nano-indentation, friction-wear test and pull-off adhesion test, using pristine epoxy coating and GO-loaded epoxy coating for comparison. Results revealed that GO–CeO2 addition could increase the hardness, elastic modulus and the wear resistance and decrease the friction coefficient of the composite coating. Compared with pristine epoxy coating, the adhesion strength of GO–CeO2/epoxy coating increased from 7.3 MPa to 12.2 MPa. Such improvement in the mechanical properties can be explained by the good dispersion of GO–CeO2 in the composite coating. In addition, salt spray and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance of the GO–CeO2-loaded coating was significantly enhanced. After 30 days of salt spray test, the coating resistance of the GO–CeO2/epoxy coating was 17.8 and 3.5 times higher compared with that of the blank epoxy coating and GO/epoxy coating, respectively. The superior barrier performance of the composite coating was mainly ascribed to the synergistic effects of the prolonged pathway against corrosive media permeation and the corrosion inhibition effect of CeO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Young R, Kinloch I, Gong L, Novoselov K (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476. https://doi.org/10.1016/j.compscitech.2012.05.005

    Article  CAS  Google Scholar 

  2. Papageorgiou D, Kinloch I, Young R (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  3. Ye Y, Chen H, Zou Y, Zhao H (2021) Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating. J Mater Sci Technol 67:226–236. https://doi.org/10.1016/j.jmst.2020.06.023

    Article  Google Scholar 

  4. Hidalgo-Manrique P, Lei X, Xu R, Zhou M, Kinloch I, Young R (2019) Copper/graphene composites: a review. J Mater Sci 54:12236–12289. https://doi.org/10.1007/s10853-019-03703-5

    Article  CAS  Google Scholar 

  5. Yao Y, Jin S, Ma X, Yu R, Zou H, Wang H, Lv X, Shu Q (2020) Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos Sci Technol 200:108457. https://doi.org/10.1016/j.compscitech.2020.108457

    Article  Google Scholar 

  6. Cui G, Bi Z, Zhang R, Liu J, Yu X, Li Z (2019) A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J 373:104–121. https://doi.org/10.1016/j.cej.2019.05.034

    Article  CAS  Google Scholar 

  7. Calovi M, Russo F, Rossi S (2021) Synergic behavior of graphene-based filler and thermochromic pigments in cataphoretic coatings. Prog Org Coat 150:105978. https://doi.org/10.1016/j.porgcoat.2020.105978

    Article  CAS  Google Scholar 

  8. Wang C, Qin Z, Feng K, Zhong B (2020) CeO2 modified graphene nanoplatelets composite powders enhanced the cathodic protection of waterborne zinc-rich epoxy coatings. J Polym Res 27:367. https://doi.org/10.1007/s10965-020-02341-9

    Article  CAS  Google Scholar 

  9. Fernández-Hernán J, López A, Torres B, Rams J (2020) Silicon oxide multilayer coatings doped with carbon nanotubes and graphene nanoplatelets for corrosion protection of AZ31B magnesium alloy. Prog Org Coat 148:105836. https://doi.org/10.1016/j.porgcoat.2020.105836

    Article  CAS  Google Scholar 

  10. McAllister M, Li J, Adamson D, Schniepp H, Abdala A, Liu J, Herrera-Alonso M, Milius D, Car R, Prud’homme R, Aksay I (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  11. Shang W, Li J, Baboukani A, Wen Y, Kong D, Peng N, Jiang J (2020) Study on the relationship between graphene dispersion and corrosion resistance of graphene composite film. Appl Surf Sci 511:145518. https://doi.org/10.1016/j.apsusc.2020.145518

    Article  CAS  Google Scholar 

  12. Chae H, Siberio-Perez D, Kim J, Go Y, Eddaoudi M, Matzger A, O’Keeffe M, Yaghi O (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 6974:427–523. https://doi.org/10.1038/nature02311

    Article  CAS  Google Scholar 

  13. Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860. https://doi.org/10.1039/b915228h

    Article  CAS  Google Scholar 

  14. Ramezanzadeh B, Haeri Z, Ramezanzadeh M (2016) A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem Eng J 303:511–528. https://doi.org/10.1016/j.cej.2016.06.028

    Article  CAS  Google Scholar 

  15. Yu Z, Di H, Ma Y, He Y, Liang L, Lv L, Ran X, Pan Y, Luo Z (2015) Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surf Coat Tech 276:471–478. https://doi.org/10.1016/j.surfcoat.2015.06.027

    Article  CAS  Google Scholar 

  16. Yu Z, Di H, Ma Y, Lv L, Pan Y, Zhang C, He Y (2015) Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl Surf Sci 351:986–996. https://doi.org/10.1016/j.apsusc.2015.06.026

    Article  CAS  Google Scholar 

  17. Suo X, Yu Y, Cao Z, Liu Y (2020) Effect of interlayer interactions on the dynamic self-stiffening behaviors of graphene oxide-based films. Adv Mater Interfaces 7:2000499. https://doi.org/10.1002/admi.202000499

    Article  CAS  Google Scholar 

  18. Vanithakumari S, Jena G, Sofia S, Thinaharan C, George R, Philip J (2020) Fabrication of superhydrophobic titanium surfaces with superior antibacterial properties using graphene oxide and silanized silica nanoparticles. Surf Coat Tech 400:126074. https://doi.org/10.1016/j.surfcoat.2020.126074

    Article  CAS  Google Scholar 

  19. Techaniyom P, Tanurat P, Sirivisoot S (2020) Osteoblast differentiation and gene expression analysis on anodized titanium samples coated with graphene oxide. Appl Surf Sci 526:146646. https://doi.org/10.1016/j.apsusc.2020.146646

    Article  CAS  Google Scholar 

  20. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M (2018) Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corros Sci 137:111–126. https://doi.org/10.1016/j.corsci.2018.03.038

    Article  CAS  Google Scholar 

  21. Amrollahi S, Ramezanzadeh B, Yari H, Ramezanzadeh M, Mahdavian M (2019) In-situ growth of ceria nanoparticles on graphene oxide nanoplatelets to be used as a multifunctional (UV shield/radical scavenger/anticorrosive) hybrid compound for exterior coatings. Prog Org Coat 136:105241. https://doi.org/10.1016/j.porgcoat.2019.105241

    Article  CAS  Google Scholar 

  22. Javidparvar A, Naderi R, Ramezanzadeh B (2020) Non-covalently surface modification of graphene oxide nanosheets and its role in the enhancement of the epoxy-based coatings’ physical properties. Colloid Surface A 602:125061. https://doi.org/10.1016/j.colsurfa.2020.125061

    Article  CAS  Google Scholar 

  23. Schem M, Schmidt T, Gerwann J, Wittmar M, Veith M, Thompson G, Molchan I, Hashimoto T, Skeldon P, Phani A, Santucci S, Zheludkevich M (2009) CeO2-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros Sci 51:2304–2315. https://doi.org/10.1016/j.corsci.2009.06.007

    Article  CAS  Google Scholar 

  24. An K, Long C, Sui Y, Qing Y, Zhao G, An Z, Wang L, Liu C (2020) Large-scale preparation of superhydrophobic cerium dioxide nanocomposite coating with UV resistance, mechanical robustness, and anti-corrosion properties. Surf Coat Tech 384:125312. https://doi.org/10.1016/j.surfcoat.2019.125312

    Article  CAS  Google Scholar 

  25. Zhao Y, Zhao C, Shi J (2018) The preparation and properties of polyurethane/Nano-CeO2 hybrid aqueous coating. Polym Sci Ser A+ 60:671–677. https://doi.org/10.1134/S0965545X18050140

    Article  CAS  Google Scholar 

  26. Sasikumar Y, Kumar A, Gasem Z, Ebenso E (2015) Hybrid nanocomposite from aniline and CeO2 nanoparticles: Surface protective performance on mild steel in acidic environment. Appl Surf Sci 330:207–215. https://doi.org/10.1016/j.apsusc.2015.01.002

    Article  CAS  Google Scholar 

  27. Xie Y, Zhao S, Ye H, Yuan J, Song P, Hu S (2015) Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II). J Electroanal Chem 757:235–242. https://doi.org/10.1016/j.jelechem.2015.09.043

    Article  CAS  Google Scholar 

  28. Ma L, Wang J, Zhang D, Huang Y, Huang L, Wang P, Qian H, Li X, Terryn H, Mol J (2021) Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chem Eng J 404:127118. https://doi.org/10.1016/j.cej.2020.127118

    Article  CAS  Google Scholar 

  29. Wang L, Deng L, Zhang D, Qian H, Du C, Li X, Mol J, Terryn H (2016) Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog Org Coat 97:261–268. https://doi.org/10.1016/j.porgcoat.2016.04.041

    Article  CAS  Google Scholar 

  30. Li H, Wang J, Yang J, Zhang J, Ding H (2020) Large CeO2 nanoflakes modified by graphene as barriers in waterborne acrylic coatings and the improved anticorrosion performance. Prog Org Coat 143:105607. https://doi.org/10.1016/j.porgcoat.2020.105607

    Article  CAS  Google Scholar 

  31. Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S, Maensiri S (2009) Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys 115:423–428. https://doi.org/10.1016/j.matchemphys.2008.12.031

    Article  CAS  Google Scholar 

  32. Kumar S, Ojha A, Patrice D, Yadav B, Materny A (2016) One-step in situ synthesis of CeO2 nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation. Phys Chem Chem Phys 18:11157–11167. https://doi.org/10.1039/c5cp04457j

    Article  CAS  Google Scholar 

  33. Jiang L, Yao M, Liu B, Li Q, Liu R, Lv H, Lu S, Gong C, Zou B, Cui T (2012) Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J Phys Chem C 116:11741–11745. https://doi.org/10.1021/jp3015113

    Article  CAS  Google Scholar 

  34. Dmonte D, Pandiyarajan A, Bhuvanesh N, Suresh S, Nandhakumar R (2018) Graphene oxide resorcinol hybrid material as fluorescent chemosensor for detection of cerium ion. Mater Lett 227:154–157. https://doi.org/10.1016/j.matlet.2018.05.051

    Article  CAS  Google Scholar 

  35. Babitha K, Sreedevi A, Priyanka K, Sabu B, Varghese T (2015) Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. Indian J Pure Ap Phy 53:596–603. https://doi.org/10.1177/104973159500500407

    Article  Google Scholar 

  36. Ferreira N, Angélica R, Marques V, De Lima C, Silva M (2016) Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Mater Lett 165:139–142. https://doi.org/10.1016/j.matlet.2015.11.107

    Article  CAS  Google Scholar 

  37. Verma R, Samdarshi S, Bojja S, Paul S, Choudhury B (2015) A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: Role of interface and oxygen vacancies. Sol Energ Mat Sol C 141:414–422. https://doi.org/10.1016/j.solmat.2015.06.027

    Article  CAS  Google Scholar 

  38. Wang Y, Kang Y, Ge M, Zhang X, Zhan L (2018) Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures. RSC Adv 8:36383–36391. https://doi.org/10.1039/c8ra05151h

    Article  CAS  Google Scholar 

  39. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638. https://doi.org/10.1039/b901421g

    Article  CAS  Google Scholar 

  40. Anandan C, Bera P (2013) XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates. Appl Surf Sci 283:297–303. https://doi.org/10.1016/j.apsusc.2013.06.104

    Article  CAS  Google Scholar 

  41. Srivastava M, Das A, Khanra P, Uddin M, Kim N, Lee J (2013) Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J Mater Chem A 1:9792–9801. https://doi.org/10.1039/c3ta11311f

    Article  CAS  Google Scholar 

  42. Saadatmandi S, Asghari M, Ramezanzadeh B (2019) Effective epoxy composite coating mechanical/fracture toughness properties improvement by incorporation of graphene oxide nano-platforms reduced by a green/biocompataible reductant. J Ind Eng Chem 75:271–284. https://doi.org/10.1016/j.jiec.2019.03.038

    Article  CAS  Google Scholar 

  43. Abdolmaleki M, Sari M, Rostami M, Ramezanzadeh B (2019) Graphene oxide nanoflakes as an efficient dispersing agent for nanoclay lamellae in an epoxy-phenolic nanocomposite coating: Mechanistic approach. Compos Sci Technol 184:107879. https://doi.org/10.1016/j.compscitech.2019.107879

    Article  CAS  Google Scholar 

  44. Moradi L, Sari M, Ramezanzadeh B (2020) Polyester-amide hyperbranched polymer as an interfacial modifier for graphene oxide nanosheets: Mechanistic approach in an epoxy nanocomposite coating. Prog Org Coat 142:105573. https://doi.org/10.1016/j.porgcoat.2020.105573

    Article  CAS  Google Scholar 

  45. Ye Y, Zhang D, Li J, Liu T, Pu J, Zhao H, Wang L (2019) One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros Sci 147:9–21. https://doi.org/10.1016/j.corsci.2018.10.034

    Article  CAS  Google Scholar 

  46. Ozcan U, Karabork F, Yazman S, Akdemir A (2019) Effect of silica/graphene nanohybrid particles on the mechanical properties of epoxy coatings. Arab J Sci Eng 44:5723–5731. https://doi.org/10.1007/s13369-019-03724-x

    Article  CAS  Google Scholar 

  47. Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43:4365–4373. https://doi.org/10.1016/S0032-3861(02)00269-0

    Article  CAS  Google Scholar 

  48. Saadatmandi S, Ramezanzadeh B, Asghari M, Bahlakeh G (2020) Graphene oxide nanoplatform surface decoration by spherical zinc-polypyrrole nanoparticles for epoxy coating properties enhancement: Detailed explorations from integrated experimental and electronic-scale quantum mechanics approaches. J Alloy Compd 816:152150. https://doi.org/10.1016/j.jallcom.2019.152510

    Article  CAS  Google Scholar 

  49. Osterle W, Dmitriev A, Wetzel B, Zhang G, Hausler I, Jim B (2016) The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Mater Design 93:474–484. https://doi.org/10.1016/j.matdes.2015.12.175

    Article  CAS  Google Scholar 

  50. Kang Y, Chen X, Song S, Yu L, Zhang P (2012) Friction and wear behavior of nanosilica-filled epoxy resin composite coatings. Appl Surf Sci 258:6384–6390. https://doi.org/10.1016/j.apsusc.2012.03.046

    Article  CAS  Google Scholar 

  51. Huang Y, Deng L, Ju P, Huang L, Qian H, Zhang D, Li X, Terryn H, Mol J (2018) Triple-action self-Healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl Mater Interfaces 10:23369–23379. https://doi.org/10.1021/acsami.8b06985

    Article  CAS  Google Scholar 

  52. Xiong L, Liu J, Yu M, Li S (2019) Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ZIF-8/graphene oxide two-dimensional nanocomposites. Corros Sci 146:70–79. https://doi.org/10.1016/j.corsci.2018.10.016

    Article  CAS  Google Scholar 

  53. Ma L, Wang J, Ren C, Ju P, Huang Y, Zhang F, Zhao F, Zhang Z, Zhang D (2020) Detection of corrosion inhibitor adsorption via a surface-enhanced Raman spectroscopy (SERS) silver nanorods tape sensor. Sensor Actuat B-Chem 321:128617. https://doi.org/10.1016/j.snb.2020.128617

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFE0203600), the National Natural Science Foundation of China (No. 51901015, 51771029), the National Science and Technology Resources Investigation Program of China (Grant No. 2019FY101400), the Research Fund of State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI) under the contract No. KFJS1902.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Fan or Dawei Zhang.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, X., Wang, J. et al. Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings. J Mater Sci 56, 10108–10123 (2021). https://doi.org/10.1007/s10853-021-05932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05932-z

Navigation