Skip to main content

Advertisement

Log in

Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible polyurethane foam (FPUF) has many advantages such as lightweight, low density and high specific strength and is widely used in furniture, automobile industry, construction and transportation. However, FPUF is extremely flammable in the air, and a large amount of toxic gas will be generated when it is burned. The fire protection technology of FPUF has attracted more and more attention. Generally, it is an effective method to improve fire protection of FPUF by introducing additive flame retardant. As a relatively new approach, layer-by-layer (LBL) self-assembly technology is widely used in research fields such as biology, materials and nanoscience. In this work, the research and application of LBL self-assembly technology in the field of flame-retardant FPUF were described, and zero-dimensional, one-dimensional, two-dimensional nanomaterials, one- and two-dimensional nanocomposites systems and other self-assembly systems in flame-retardant FPUF were introduced in detail. The flame-retardant mechanism of flame-retardant FPUF systems was also systematically analyzed, and finally, the development of LBL self-assembly technology in flame-retardant FPUF was prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lefebvre J, Bastin B, Le Bras M, Duquesne S, Paleja R, Delobel R (2005) Thermal stability and fire properties of conventional flexible polyurethane foam formulations. Polym Degrad Stab 88(1):28–34. https://doi.org/10.1016/j.polymdegradstab.2004.01.025

    Article  CAS  Google Scholar 

  2. Wolska A, Gozdzikiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634. https://doi.org/10.1007/s10853-012-6433-z

    Article  CAS  Google Scholar 

  3. Zhang X, Li S, Zhu ZY, Wang Z, Xie H (2019) Research progress in flame retardant modification of polyurethane foams. J Shenyang Aerosp Univ 36(06):80–90. https://doi.org/10.3969/j.issn.2095-1248.2019.06.011

    Article  Google Scholar 

  4. Wang YL, Peng XH (2017) Importance of flame retardants in polyurethane foam plastics. Comput Knowl Technol 13(29):247–249. https://doi.org/10.14004/j.cnki.ckt.2017.3280

    Article  Google Scholar 

  5. Zheng DZ, Xin MH, Li MC (2015) Research progress of halogen-free flame retardant flexible polyurethane foams. Chem Ind Eng Prog 34:3349–3355. https://doi.org/10.16085/j.issn.1000-6613.2015.09.022

    Article  CAS  Google Scholar 

  6. Zhi M, Liu Q, Zhao Y, Gao S, Zhang Z, He Y (2020) Novel MoS2-DOPO hybrid for effective enhancements on flame retardancy and smoke suppression of flexible polyurethane foams. ACS Omega 5(6):2734–2746. https://doi.org/10.1021/acsomega.9b03346

    Article  CAS  Google Scholar 

  7. Xie C, Zhou WR, Huang YQ (2017) Research progress on flame retardancy of polyurethane. Mod Chem Res 7:82–83

    Google Scholar 

  8. Li B (2014) The combustion performance effect of several additive flame retardant on the flexible polyurethane foam. Fire Sci Technol 33(9):1055–1058. https://doi.org/10.3969/j.issn.1009-0029.2014.09.024

    Article  Google Scholar 

  9. Huang FL (2008) A novel halogen—free flame retardant for flexible polyurethane foam. Chem Res Appl 20(7):840–843. https://doi.org/10.3969/j.issn.1004-1656.2008.07.009

    Article  CAS  Google Scholar 

  10. Bashirzadeh R, Gharehbaghi A (2009) An investigation on reactivity, mechanical and fire properties of pu flexible foam. J Cell Plast 46(2):129–158

    Article  Google Scholar 

  11. Liu H, Liu CX, Ma FG (2017) Research progress in flame-retardant poly-urethane. Synth Mater Aging Appl 46(5):113–119. https://doi.org/10.16584/j.cnki.issn1671-5381.2017.05.025

    Article  Google Scholar 

  12. Zhang XG, Wang LP, Ning FK, Xue C, Su TD (2012) Research progress of halogen-free fire-retardant polyurethane foams. Chem Ind Eng Progr 31(7):1521–1527. https://doi.org/10.16085/j.issn.1000-6613.2012.07.021

    Article  CAS  Google Scholar 

  13. Zhang JC, Wu SH, Zheng Q, Tian SH (2019) Preparation of nitrogen-containing reactive flame retardant and its effects on flame retardancy of polyurethane foam. Plastics Science and Technology 47(4):31–36. https://doi.org/10.15925/j.cnki.issn1005-3360.2019.04.007

    Google Scholar 

  14. Bhoyate S, Ionescu M, Kahol P, Chen J, Mishra S (2018) Highly flame-retardant polyurethane foam based on reactive phosphorus polyol and limonene-based polyol. J Appl Polym Sci 135:46224. https://doi.org/10.1002/app.46224

    Article  CAS  Google Scholar 

  15. Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S (2012) Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stab 97(11):2428–2440. https://doi.org/10.1016/j.polymdegradstab.2012.07.019

    Article  CAS  Google Scholar 

  16. Zhang WY (2013) Application of new type DOPO-based reactive flame retardant in polyurethane. Plastics 42(4):82–85. https://doi.org/10.3969/j.issn.1001-9456.2013.04.024

    Article  CAS  Google Scholar 

  17. Zhu LM, Liu YJ (2005) Polyurethane foam plastics, 3rd edn. Chemical Industry Press, New York, pp 136–144

    Google Scholar 

  18. Zheng MR (2016) Recent research progress in flame-retardant polyurethane foams. Thermoset Resin 4:42–53

    Google Scholar 

  19. Zhao J, Fei J, Gao L, Cui W, Yang Y, Wang A, Li J (2013) Bioluminescent microcapsules: applications in activating a photosensitizer. Chem Eur J 19(14):4548–4555. https://doi.org/10.1002/chem.201203922

    Article  CAS  Google Scholar 

  20. Lei WX, Ren KF, Chen XC, Hu M, Ji J (2017) Dynamic spongy microporous films to load lysozyme for antibacterial coating. Acta Polym Sin 05:744–751. https://doi.org/10.11777/j.issn1000-3304.2017.16260

    Article  CAS  Google Scholar 

  21. Liang S, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76(11):1642–1665. https://doi.org/10.1016/j.porgcoat.2013.07.014

    Article  CAS  Google Scholar 

  22. Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z (2013) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5(7):3013–3021. https://doi.org/10.1039/c3nr34020a

    Article  CAS  Google Scholar 

  23. Wang TL, Liu MT, Ma HW (2013) Recent advances in thin-film material based on layered double hydroxides via a layer-by-layer self-assembly method. Chem Ind Eng Progr 32(07):1584-1590+1603

    Google Scholar 

  24. Chen XX, Fang F, Du TX, Zhang X, Ding X, Tian XY (2016) Preparation and properties of chitosan-potassium alginate flame retardant coating via layer-by-layer self-assembly technology. Polym Mater Sci Eng 32(07):121–124. https://doi.org/10.16865/j.cnki.1000-7555.2016.07.023

    Article  CAS  Google Scholar 

  25. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. Acs Macro Lett 2(5):361–365. https://doi.org/10.1021/mz400105e

    Article  CAS  Google Scholar 

  26. Lazar S, Carosio F, Davesne A, Jimenez M, Bourbigot S (2018) Extreme heat shielding of clay/chitosan nanobrick wall on flexible foam. ACS Appl Mater Interfaces 10(37):31686–31696. https://doi.org/10.1021/acsami.8b10227

    Article  CAS  Google Scholar 

  27. Shi XW, Wang XL (2018) The research progress of flame retarded nanocomposites. Plast Addit 01:11–1352. https://doi.org/10.3969/j.issn.1672-6294.2018.01.0002

    Article  Google Scholar 

  28. Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649. https://doi.org/10.1021/am2017915

    Article  CAS  Google Scholar 

  29. Li YC, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J Mater Chem A 1(41):12987–12997

    Article  CAS  Google Scholar 

  30. Carosio F, Maddalena L, Gomez J, Saracco G, Fina A (2018) Graphene oxide exoskeleton to produce self-extinguishing, nonignitable, and flame resistant flexible foams: a mechanically tough alternative to inorganic aerogels. Adv Mater Interfaces 5:1801288–1801297. https://doi.org/10.1002/admi.201801288

    Article  CAS  Google Scholar 

  31. Bigelow WC, Pickett DL, Zisman WA (1946) Oleophobic monolayers. J Colloid Sci 1(6):513–538. https://doi.org/10.1016/0095-8522(46)90059-1

    Article  CAS  Google Scholar 

  32. Bewig KW, Zisman WA (1964) Surface potentials and induced polarization in nonpolar liquids adsorbed on metals1. J Phys Chem 68(7):1804–1813. https://doi.org/10.1021/j100789a023

    Article  CAS  Google Scholar 

  33. Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594. https://doi.org/10.1016/0095-8522(66)90018-3

    Article  CAS  Google Scholar 

  34. Baumeister EW, Wolrad V, Wolrad V, Baumeister W (1980) Electron microscopy at molecular dimensions: state of the art and strategies for the future. Springer, New York, p 353

    Book  Google Scholar 

  35. Golander CG, Arwin H, Eriksson JC, Lundstrom I, Larsson R (1982) Heparin surface film formation through adsorption of colloidal particles studied by ellipsometry and scanning electron microscopy. Colloids Surf 5(1):1–16. https://doi.org/10.1016/0166-6622(82)80053-X

    Article  CAS  Google Scholar 

  36. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835. https://doi.org/10.1016/0040-6090(92)90417-a

    Article  Google Scholar 

  37. Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9(9–10):677–684. https://doi.org/10.1016/0956-5663(94)80065-0

    Article  CAS  Google Scholar 

  38. Zhang ZD, Yang WF (2017) Research progress and application of layer-by-layer self-assembly technology. Mater Rev 31(05):40–45. https://doi.org/10.11896/j.issn.1005-023X.2017.05.007

    Article  Google Scholar 

  39. Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012

    Article  CAS  Google Scholar 

  40. Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv 4(32):16674–16680. https://doi.org/10.1039/c4ra01343c

    Article  CAS  Google Scholar 

  41. Zhao LL (2015) Fabrication of graphene oxide/polyethyleneimine layer-by-layer assembly film and its hydrogen barrier properties. Ph.d., dissertation, China University of Petroleum (East China)

  42. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750. https://doi.org/10.1016/j.polymdegradstab.2011.02.019

    Article  CAS  Google Scholar 

  43. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634. https://doi.org/10.1016/j.polymdegradstab.2012.11.006

    Article  CAS  Google Scholar 

  44. Shi Y, Long Z, Yu B, Zhou K, Gui Z, Yuen RKK, Hu Y (2015) Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J Mater Chem A 3(33):17064–17073. https://doi.org/10.1039/c5ta04349b

    Article  CAS  Google Scholar 

  45. Yang YB, Su LN, Wang EN (2014) Research progress of layer-by-layer self-assembly technology. Chem World 55(10):636–640. https://doi.org/10.19500/j.cnki.0367-6358.2014.10.017

    Article  CAS  Google Scholar 

  46. Qiu X, Li Z, Li X, Zhang Z (2018) Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J 334:108–122. https://doi.org/10.1016/j.cej.2017.09.194

    Article  CAS  Google Scholar 

  47. Standard Test Method for Flame Resistance of Textiles (Vertical Test) (2015) ASTM International

  48. McKenna ST, Hull TR (2016) The fire toxicity of polyurethane foams. Fire Sci Rev 5:1–27. https://doi.org/10.1186/s40038-016-0012-3

    Article  CAS  Google Scholar 

  49. Kim YS, Davis R (2014) Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550:184–189. https://doi.org/10.1016/j.tsf.2013.10.167

    Article  CAS  Google Scholar 

  50. Krämer RH, Zammarano M, Linteris GT, Gedde UW, Gilman JW (2010) Heat release and structural collapse of flexible polyurethane foam. Polym Degrad Stab 95(6):1115–1122. https://doi.org/10.1016/j.polymdegradstab.2010.02.019

    Article  CAS  Google Scholar 

  51. Holder KM, Cain AA, Plummer MG, Stevens BE, Odenborg PK, Morgan AB, Grunlan JC (2016) Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol Mater Eng 301(6):665–673. https://doi.org/10.1002/mame.201500327

    Article  CAS  Google Scholar 

  52. Zhi M, Liu Q, Gao S, Zhao Y, Zhu X, Jia X (2019) Layer-by-layer assembled nanocoating containing MoS2 nanosheets and C60 for enhancing flame retardancy properties of flexible polyurethane foam. Mater Res Express 6(12):125312–125324. https://doi.org/10.1088/2053-1591/ab556b

    Article  CAS  Google Scholar 

  53. Carosio F, Fina A (2019) Three organic/inorganic nanolayers on flexible foam allow retaining superior flame retardancy performance upon mechanical compression cycles. Front Mater 6:20. https://doi.org/10.3389/fmats.2019.00020

    Article  Google Scholar 

  54. Hai Y, Wang C, Jiang S, Liu X (2019) Layer-by-layer assembly of aerogel and alginate toward self-extinguishing flexible polyurethane foam. Ind Eng Chem Res 59(1):475–483. https://doi.org/10.1021/acs.iecr.9b05590

    Article  CAS  Google Scholar 

  55. Pan Y, Pan H, Yuan B, Hong N, Zhan J, Wang B, Song L, Hu Y (2015) Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam. Mater Chem Phys 163:107–115. https://doi.org/10.1016/j.matchemphys.2015.07.020

    Article  CAS  Google Scholar 

  56. Carosio F, Ghanadpour M, Alongi J, Wagberg L (2018) Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr Polym 202:479–487. https://doi.org/10.1016/j.carbpol.2018.09.005

    Article  CAS  Google Scholar 

  57. Park JH, Kim BS, Yoo YC, Khil MS, Kim HY (2008) Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via a layer-by-layer self-assembly. J Appl Polym Sci 107(4):2211–2216. https://doi.org/10.1002/app.27322

    Article  CAS  Google Scholar 

  58. Cheng S, Liu X, Yun S, Luo H, Gao Y (2014) SiO2/TiO2 composite aerogels: Preparation via ambient pressure drying and photocatalytic performance. Ceram Int 40(9):13781–13786. https://doi.org/10.1016/j.ceramint.2014.05.093

    Article  CAS  Google Scholar 

  59. Thirumal M, Singha NK, Khastgir D, Manjunath BS, Naik YP (2010) Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J Appl Polym Sci 116(4):2260–2268. https://doi.org/10.1002/app.31626

    Article  CAS  Google Scholar 

  60. Haile M, Fomete S, Lopez ID, Grunlan JC (2015) Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. J Mater Sci 51(1):375–381. https://doi.org/10.1007/s10853-015-9258-8

    Article  CAS  Google Scholar 

  61. Wang CQ, Lv HN, Sun J, Cai ZS (2014) Flame retardant and thermal decomposition properties of flexible polyurethane foams filled with several halogen-free flame retardants. Polym Eng Sci 54(11):2497–2507. https://doi.org/10.1002/pen.23794

    Article  CAS  Google Scholar 

  62. Pan Y, Zhan J, Pan H, Wang W, Ge H, Song L, Hu Y (2015) A novel and effective method to fabricate flame retardant and smoke suppressed flexible polyurethane foam. RSC Adv 5(83):67878–67885. https://doi.org/10.1039/c5ra09553k

    Article  CAS  Google Scholar 

  63. Chen YL, Gou XY, Cao ZW (2019) Preparation and progress of layered flame retardant nanocomposites. Eng Plast Appl 47(10):128–134

    Google Scholar 

  64. Zammarano M, Krämer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Technol 19(6):588–595. https://doi.org/10.1002/pat.1111

    Article  CAS  Google Scholar 

  65. Davis R, Kim YS (2010) Fabrication, characterization, and flammability testing of multiwalled carbon nanotube layer-by-layer coated polyurethane foam, NIST Technical Note 1674. National Institute of Standards and Technology, Gaithersburg, MD

  66. Kim YS, Davis R, Cain AA, Grunlan JC (2011) Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13):2847–2855. https://doi.org/10.1016/j.polymer.2011.04.023

    Article  CAS  Google Scholar 

  67. Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2014) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Interfaces 7(1):101–111. https://doi.org/10.1021/am507045g

    Article  CAS  Google Scholar 

  68. Smith RJ, Holder KM, Ruiz S, Hahn W, Song Y, Lvov YM, Grunlan JC (2018) Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability. Adv Func Mater 28(27):1703289. https://doi.org/10.1002/adfm.201703289

    Article  CAS  Google Scholar 

  69. Pan HF (2015) Design of layer by layer flame retardant coatings on cotton fabric and flexible polyurethane foam and study on their properties. Ph.d., dissertation, University of Science and Technology of China

  70. Doğan M, Turhan Y, Alkan M, Namli H, Turan P, Demirbaş Ö (2008) Functionalized sepiolite for heavy metal ions adsorption. Desalination 230(1–3):248–268. https://doi.org/10.1016/j.desal.2007.11.029

    Article  CAS  Google Scholar 

  71. Pan Y, Liu L, Cai W, Hu Y, Jiang S, Zhao H (2019) Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl Clay Sci 168:230–236. https://doi.org/10.1016/j.clay.2018.11.014

    Article  CAS  Google Scholar 

  72. Wang B, Zhou K, Wang B, Gui Z, Hu Y (2014) Synthesis and characterization of CuMoO4/Zn–Al layered double hydroxide hybrids and their application as a reinforcement in polypropylene. Ind Eng Chem Res 53(31):12355–12362. https://doi.org/10.1021/ie502232a

    Article  CAS  Google Scholar 

  73. Kim YS, Harris R, Davis R (2012) Innovative approach to rapid growth of highly clay-filled coatings on porous polyurethane foam. ACS Macro Lett 1:820–824. https://doi.org/10.1021/mz300102h

    Article  CAS  Google Scholar 

  74. Kim YS, Li YC, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6(3):2146–2152. https://doi.org/10.1021/am405259n

    Article  CAS  Google Scholar 

  75. Cain AA, Plummer MGB, Murray SE, Bolling L, Regev O, Grunlan JC (2014) Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer. J Mater Chem A 2(41):17609–17617. https://doi.org/10.1039/c4ta03541k

    Article  CAS  Google Scholar 

  76. Chen P, Zhao Y, Wang W, Zhang T, Song S (2019) Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan(-)montmorillonite nanosheet membrane assembled on flexible polyurethane foam. Polymers (Basel) 11(2):213. https://doi.org/10.3390/polym11020213

    Article  CAS  Google Scholar 

  77. Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6(19):16903–16908. https://doi.org/10.1021/am504455k

    Article  CAS  Google Scholar 

  78. Holder KM, Huff ME, Cosio MN, Grunlan JC (2014) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50(6):2451–2458. https://doi.org/10.1007/s10853-014-8800-4

    Article  CAS  Google Scholar 

  79. Meng Z, Huang AP, Zhang WX, Guo XJ, Zhang YX, Zhu BC (2017) Research progress in preparation and application of graphene oxide. Synth Mater Aging Appl 46(06):95-99+111. https://doi.org/10.16584/j.cnki.issn1671-5381.2017.06.020

    Article  Google Scholar 

  80. Bao C, Song L, Wilkie CA, Yuan B, Guo Y, Hu Y, Gong X (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22(32):16399–16406. https://doi.org/10.1039/c2jm32500d

    Article  CAS  Google Scholar 

  81. Maddalena L, Carosio F, Gomez J, Saracco G, Fina A (2018) Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym Degrad Stab 152:1–9. https://doi.org/10.1016/j.polymdegradstab.2018.03.013

    Article  CAS  Google Scholar 

  82. Zhang X, Shen Q, Zhang X, Pan H, Lu Y (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51(23):10361–10374. https://doi.org/10.1007/s10853-016-0247-3

    Article  CAS  Google Scholar 

  83. Maddalena L, Gomez J, Fina A, Carosio F (2021) Effects of graphite oxide nanoparticle size on the functional properties of layer-by-layer coated flexible foams. Nanomaterials (Basel) 11 (2):266. https://doi.org/10.3390/nano11020266

    Article  Google Scholar 

  84. Pan H, Yu B, Wang W, Pan Y, Song L, Hu Y (2016) Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties. RSC Adv 6(115):114304–114312. https://doi.org/10.1039/c6ra15522g

    Article  CAS  Google Scholar 

  85. Pan H, Lu Y, Song L, Zhang X, Hu Y (2016) Fabrication of binary hybrid-filled layer-by-layer coatings on flexible polyurethane foams and studies on their flame-retardant and thermal properties. RSC Adv 6(82):78286–78295. https://doi.org/10.1039/c6ra03760g

    Article  CAS  Google Scholar 

  86. Wang L, Su S, Chen D, Wilkie CA (2009) Variation of anions in layered double hydroxides: Effects on dispersion and fire properties. Polym Degrad Stab 94(5):770–781. https://doi.org/10.1016/j.polymdegradstab.2009.02.003

    Article  CAS  Google Scholar 

  87. Li YC, Yang YH, Shields J, Davis R (2015) Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer 56:284–292. https://doi.org/10.1016/j.polymer.2014.11.023

    Article  CAS  Google Scholar 

  88. Liu L, Wang W, Hu Y (2015) Layered double hydroxide-decorated flexible polyurethane foam: significantly improved toxic effluent elimination. RSC Adv 5(118):97458–97466. https://doi.org/10.1039/c5ra19414h

    Article  CAS  Google Scholar 

  89. Yang YH, Li YC, Shields J, Davis R (2015) Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.41767

    Article  Google Scholar 

  90. Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450. https://doi.org/10.1149/1.1393216

    Article  CAS  Google Scholar 

  91. Wang W, Pan Y, Pan H, Yang W, Liew KM, Song L, Hu Y (2016) Synthesis and characterization of MnO2 nanosheets based multilayer coating and applications as a flame retardant for flexible polyurethane foam. Compos Sci Technol 123:212–221. https://doi.org/10.1016/j.compscitech.2015.12.014

    Article  CAS  Google Scholar 

  92. Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128. https://doi.org/10.1016/j.compscitech.2014.11.017

    Article  CAS  Google Scholar 

  93. Pan H, Shen Q, Zhang Z, Yu B, Lu Y (2018) MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties. J Mater Sci 53(12):9340–9349. https://doi.org/10.1007/s10853-018-2199-2

    Article  CAS  Google Scholar 

  94. Feng X, Xing W, Song L, Hu Y (2014) In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J Mater Chem A 2(33):13299–13308. https://doi.org/10.1039/c4ta01885k

    Article  CAS  Google Scholar 

  95. Zhang J, Kong Q, Yang L, Wang D-Y (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18(10):3066–3074. https://doi.org/10.1039/c5gc03048j

    Article  CAS  Google Scholar 

  96. Mu X, Yuan B, Pan Y, Feng X, Duan L, Zong R, Hu Y (2017) A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams. Mater Chem Phys 191:52–61. https://doi.org/10.1016/j.matchemphys.2017.01.023

    Article  CAS  Google Scholar 

  97. Pan Y, Cai W, Du J, Song L, Hu Y, Zhao H (2020) Lanthanum phenylphosphonate–based multilayered coating for reducing flammability and smoke production of flexible polyurethane foam. Polym Adv Technol 31(6):1330–1339. https://doi.org/10.1002/pat.4862

    Article  CAS  Google Scholar 

  98. Liu D, Zhang M, He L, Chen Y, Lei W (2017) Layer-by-layer assembly fabrication of porous boron nitride coated multifunctional materials for water cleaning. Adv Mater Interfaces 4(16):1700392–1700400. https://doi.org/10.1002/admi.201700392

    Article  CAS  Google Scholar 

  99. Qiu X, Li Z, Li X, Yu L, Zhang Z (2019) Construction and flame-retardant performance of layer-by-layer assembled hexagonal boron nitride coatings on flexible polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.47839

    Article  Google Scholar 

  100. Davesne A-L, Lazar S, Bellayer S, Qin S, Grunlan JC, Bourbigot S, Jimenez M (2019) Hexagonal boron nitride platelet-based nanocoating for fire protection. ACS Appl Nano Mater 2(9):5450–5459. https://doi.org/10.1021/acsanm.9b01055

    Article  CAS  Google Scholar 

  101. Davis R, Li YC, Gervasio M, Luu J, Kim YS (2015) One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams. ACS Appl Mater Interfaces 7(11):6082–6092. https://doi.org/10.1021/acsami.5b01105

    Article  CAS  Google Scholar 

  102. Pan H, Pan Y, Wang W, Song L, Hu Y, Liew KM (2014) Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind Eng Chem Res 53(37):14315–14321. https://doi.org/10.1021/ie502215p

    Article  CAS  Google Scholar 

  103. Wang W (2017) Study on flame retardancy of binary hybrids (CNT/GO) based on graphene oxide and carbon nanotube. Ind Saf Dust Control 43(3):33–37. https://doi.org/10.3969/j.issn.1001-425X.2017.03.010

    Article  Google Scholar 

  104. Wang W, Pan H, Shi Y, Yu B, Pan Y, Liew KM, Song L, Hu Y (2015) Sandwichlike coating consisting of alternating montmorillonite and β-FeOOH for reducing the fire hazard of flexible polyurethane foam. ACS Sustain Chem Eng 3(12):3214–3223. https://doi.org/10.1021/acssuschemeng.5b00805

    Article  CAS  Google Scholar 

  105. Pan H, Lu Y, Song L, Zhang X, Hu Y (2016) Construction of layer-by-layer coating based on graphene oxide/β-FeOOH nanorods and its synergistic effect on improving flame retardancy of flexible polyurethane foam. Compos Sci Technol 129:116–122. https://doi.org/10.1016/j.compscitech.2016.04.018

    Article  CAS  Google Scholar 

  106. Carosio F, Negrell-Guirao C, Alongi J, David G, Camino G (2015) All-polymer layer by layer coating as efficient solution to polyurethane foam flame retardancy. Eur Polym J 70:94–103. https://doi.org/10.1016/j.eurpolymj.2015.07.001

    Article  CAS  Google Scholar 

  107. Wang X, Pan Y-T, Wan J-T, Wang D-Y (2014) An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Adv 4(86):46164–46169. https://doi.org/10.1039/c4ra07972h

    Article  CAS  Google Scholar 

  108. De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145. https://doi.org/10.1016/s0141-3910(02)00266-5

    Article  Google Scholar 

  109. Li P, Liu C, Xu YJ, Jiang ZM, Liu Y, Zhu P (2020) Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: flame retardancy, smoke suppression and flame-retardant mechanism. Polym Degrad Stab 181:109302. https://doi.org/10.1016/j.polymdegradstab.2020.109302

    Article  CAS  Google Scholar 

  110. Pan Y, Zhan J, Pan H, Wang W, Tang G, Song L, Hu Y (2016) Effect of fully biobased coatings constructed via layer-by-layer assembly of chitosan and lignosulfonate on the thermal, flame retardant, and mechanical properties of flexible polyurethane foam. ACS Sustain Chem Eng 4(3):1431–1438. https://doi.org/10.1021/acssuschemeng.5b01423

    Article  CAS  Google Scholar 

  111. Li YC, Yang YH, Kim YS, Shields J, Davis R (2014) DNA-based nanocomposite biocoatings for fire-retarding polyurethane foam. Green Mater 2(3):144–152. https://doi.org/10.1680/gmat.14.00003

    Article  Google Scholar 

  112. Nabipour H, Wang X, Song L, Hu Y (2020) A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr Polym 246:116641. https://doi.org/10.1016/j.carbpol.2020.116641

    Article  CAS  Google Scholar 

  113. Xu W, Chen R, Du Y, Wang G (2020) Design water-soluble phenolic/zeolitic imidazolate framework-67 flame retardant coating via layer-by-layer assembly technology: enhanced flame retardancy and smoke suppression of flexible polyurethane foam. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109152

    Article  Google Scholar 

  114. Zhao S, Yin L, Zhou Q, Liu C, Zhou K (2020) In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144700

    Article  Google Scholar 

  115. Zhou W-H, Lu C-H, Guo X-C, Chen F-R, Yang H-H, Wang X-R (2010) Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J Mater Chem 20(5):880–883. https://doi.org/10.1039/b916619j

    Article  CAS  Google Scholar 

  116. Dong Z, Wang D, Liu X, Pei X, Chen L, Jin J (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2(14):5034–5040. https://doi.org/10.1039/c3ta14751g

    Article  CAS  Google Scholar 

  117. Cho JH, Vasagar V, Shanmuganathan K, Jones AR, Nazarenko S, Ellison CJ (2015) Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams. Chem Mater 27(19):6784–6790. https://doi.org/10.1021/acs.chemmater.5b03013

    Article  CAS  Google Scholar 

  118. Qiu X, Kundu CK, Li Z, Li X, Zhang Z (2019) Layer-by-layer-assembled flame-retardant coatings from polydopamine-induced in situ functionalized and reduced graphene oxide. J Mater Sci 54(21):13848–13862. https://doi.org/10.1007/s10853-019-03879-w

    Article  CAS  Google Scholar 

  119. Babrauskas V, Peacock RD (1992) Heat release rate: The single most important variable in fire hazard. Fire Saf J 18(3):255–272. https://doi.org/10.1016/0379-7112(92)90019-9

    Article  CAS  Google Scholar 

  120. Kim Y-G, Kim HS, Jo SM, Kim SY, Yang BJ, Cho J, Lee S, Cha JE (2018) Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels. Chem Eng J 351:473–481. https://doi.org/10.1016/j.cej.2018.06.102

    Article  CAS  Google Scholar 

  121. Chen HB, Shen P, Chen MJ, Zhao HB, Schiraldi DA (2016) Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl Mater Interfaces 8(47):32557–32564. https://doi.org/10.1021/acsami.6b11659

    Article  CAS  Google Scholar 

  122. Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22(43):23057–23063. https://doi.org/10.1039/c2jm35

    Article  CAS  Google Scholar 

  123. Shi X, Yang P, Peng X, Huang C, Qian Q, Wang B, He J, Liu X, Li Y, Kuang T (2019) Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer 170:65–75. https://doi.org/10.1016/j.polymer.2019.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (No. 2018YFC0809506), National Natural Science Foundation of China (No. U1633203), Sichuan Science and Technology Program (No. 2018GZYZF0069) and General Program of Civil Aviation Flight University of China (No. J2018-07, J2019-119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanyi Liu or Maoyong Zhi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Gao, S., Zhao, Y. et al. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. J Mater Sci 56, 9605–9643 (2021). https://doi.org/10.1007/s10853-021-05904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05904-3