Abstract
Flexible polyurethane foam (FPUF) has many advantages such as lightweight, low density and high specific strength and is widely used in furniture, automobile industry, construction and transportation. However, FPUF is extremely flammable in the air, and a large amount of toxic gas will be generated when it is burned. The fire protection technology of FPUF has attracted more and more attention. Generally, it is an effective method to improve fire protection of FPUF by introducing additive flame retardant. As a relatively new approach, layer-by-layer (LBL) self-assembly technology is widely used in research fields such as biology, materials and nanoscience. In this work, the research and application of LBL self-assembly technology in the field of flame-retardant FPUF were described, and zero-dimensional, one-dimensional, two-dimensional nanomaterials, one- and two-dimensional nanocomposites systems and other self-assembly systems in flame-retardant FPUF were introduced in detail. The flame-retardant mechanism of flame-retardant FPUF systems was also systematically analyzed, and finally, the development of LBL self-assembly technology in flame-retardant FPUF was prospected.
























Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Lefebvre J, Bastin B, Le Bras M, Duquesne S, Paleja R, Delobel R (2005) Thermal stability and fire properties of conventional flexible polyurethane foam formulations. Polym Degrad Stab 88(1):28–34. https://doi.org/10.1016/j.polymdegradstab.2004.01.025
Wolska A, Gozdzikiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634. https://doi.org/10.1007/s10853-012-6433-z
Zhang X, Li S, Zhu ZY, Wang Z, Xie H (2019) Research progress in flame retardant modification of polyurethane foams. J Shenyang Aerosp Univ 36(06):80–90. https://doi.org/10.3969/j.issn.2095-1248.2019.06.011
Wang YL, Peng XH (2017) Importance of flame retardants in polyurethane foam plastics. Comput Knowl Technol 13(29):247–249. https://doi.org/10.14004/j.cnki.ckt.2017.3280
Zheng DZ, Xin MH, Li MC (2015) Research progress of halogen-free flame retardant flexible polyurethane foams. Chem Ind Eng Prog 34:3349–3355. https://doi.org/10.16085/j.issn.1000-6613.2015.09.022
Zhi M, Liu Q, Zhao Y, Gao S, Zhang Z, He Y (2020) Novel MoS2-DOPO hybrid for effective enhancements on flame retardancy and smoke suppression of flexible polyurethane foams. ACS Omega 5(6):2734–2746. https://doi.org/10.1021/acsomega.9b03346
Xie C, Zhou WR, Huang YQ (2017) Research progress on flame retardancy of polyurethane. Mod Chem Res 7:82–83
Li B (2014) The combustion performance effect of several additive flame retardant on the flexible polyurethane foam. Fire Sci Technol 33(9):1055–1058. https://doi.org/10.3969/j.issn.1009-0029.2014.09.024
Huang FL (2008) A novel halogen—free flame retardant for flexible polyurethane foam. Chem Res Appl 20(7):840–843. https://doi.org/10.3969/j.issn.1004-1656.2008.07.009
Bashirzadeh R, Gharehbaghi A (2009) An investigation on reactivity, mechanical and fire properties of pu flexible foam. J Cell Plast 46(2):129–158
Liu H, Liu CX, Ma FG (2017) Research progress in flame-retardant poly-urethane. Synth Mater Aging Appl 46(5):113–119. https://doi.org/10.16584/j.cnki.issn1671-5381.2017.05.025
Zhang XG, Wang LP, Ning FK, Xue C, Su TD (2012) Research progress of halogen-free fire-retardant polyurethane foams. Chem Ind Eng Progr 31(7):1521–1527. https://doi.org/10.16085/j.issn.1000-6613.2012.07.021
Zhang JC, Wu SH, Zheng Q, Tian SH (2019) Preparation of nitrogen-containing reactive flame retardant and its effects on flame retardancy of polyurethane foam. Plastics Science and Technology 47(4):31–36. https://doi.org/10.15925/j.cnki.issn1005-3360.2019.04.007
Bhoyate S, Ionescu M, Kahol P, Chen J, Mishra S (2018) Highly flame-retardant polyurethane foam based on reactive phosphorus polyol and limonene-based polyol. J Appl Polym Sci 135:46224. https://doi.org/10.1002/app.46224
Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S (2012) Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stab 97(11):2428–2440. https://doi.org/10.1016/j.polymdegradstab.2012.07.019
Zhang WY (2013) Application of new type DOPO-based reactive flame retardant in polyurethane. Plastics 42(4):82–85. https://doi.org/10.3969/j.issn.1001-9456.2013.04.024
Zhu LM, Liu YJ (2005) Polyurethane foam plastics, 3rd edn. Chemical Industry Press, New York, pp 136–144
Zheng MR (2016) Recent research progress in flame-retardant polyurethane foams. Thermoset Resin 4:42–53
Zhao J, Fei J, Gao L, Cui W, Yang Y, Wang A, Li J (2013) Bioluminescent microcapsules: applications in activating a photosensitizer. Chem Eur J 19(14):4548–4555. https://doi.org/10.1002/chem.201203922
Lei WX, Ren KF, Chen XC, Hu M, Ji J (2017) Dynamic spongy microporous films to load lysozyme for antibacterial coating. Acta Polym Sin 05:744–751. https://doi.org/10.11777/j.issn1000-3304.2017.16260
Liang S, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76(11):1642–1665. https://doi.org/10.1016/j.porgcoat.2013.07.014
Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z (2013) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5(7):3013–3021. https://doi.org/10.1039/c3nr34020a
Wang TL, Liu MT, Ma HW (2013) Recent advances in thin-film material based on layered double hydroxides via a layer-by-layer self-assembly method. Chem Ind Eng Progr 32(07):1584-1590+1603
Chen XX, Fang F, Du TX, Zhang X, Ding X, Tian XY (2016) Preparation and properties of chitosan-potassium alginate flame retardant coating via layer-by-layer self-assembly technology. Polym Mater Sci Eng 32(07):121–124. https://doi.org/10.16865/j.cnki.1000-7555.2016.07.023
Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. Acs Macro Lett 2(5):361–365. https://doi.org/10.1021/mz400105e
Lazar S, Carosio F, Davesne A, Jimenez M, Bourbigot S (2018) Extreme heat shielding of clay/chitosan nanobrick wall on flexible foam. ACS Appl Mater Interfaces 10(37):31686–31696. https://doi.org/10.1021/acsami.8b10227
Shi XW, Wang XL (2018) The research progress of flame retarded nanocomposites. Plast Addit 01:11–1352. https://doi.org/10.3969/j.issn.1672-6294.2018.01.0002
Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649. https://doi.org/10.1021/am2017915
Li YC, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J Mater Chem A 1(41):12987–12997
Carosio F, Maddalena L, Gomez J, Saracco G, Fina A (2018) Graphene oxide exoskeleton to produce self-extinguishing, nonignitable, and flame resistant flexible foams: a mechanically tough alternative to inorganic aerogels. Adv Mater Interfaces 5:1801288–1801297. https://doi.org/10.1002/admi.201801288
Bigelow WC, Pickett DL, Zisman WA (1946) Oleophobic monolayers. J Colloid Sci 1(6):513–538. https://doi.org/10.1016/0095-8522(46)90059-1
Bewig KW, Zisman WA (1964) Surface potentials and induced polarization in nonpolar liquids adsorbed on metals1. J Phys Chem 68(7):1804–1813. https://doi.org/10.1021/j100789a023
Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594. https://doi.org/10.1016/0095-8522(66)90018-3
Baumeister EW, Wolrad V, Wolrad V, Baumeister W (1980) Electron microscopy at molecular dimensions: state of the art and strategies for the future. Springer, New York, p 353
Golander CG, Arwin H, Eriksson JC, Lundstrom I, Larsson R (1982) Heparin surface film formation through adsorption of colloidal particles studied by ellipsometry and scanning electron microscopy. Colloids Surf 5(1):1–16. https://doi.org/10.1016/0166-6622(82)80053-X
Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835. https://doi.org/10.1016/0040-6090(92)90417-a
Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9(9–10):677–684. https://doi.org/10.1016/0956-5663(94)80065-0
Zhang ZD, Yang WF (2017) Research progress and application of layer-by-layer self-assembly technology. Mater Rev 31(05):40–45. https://doi.org/10.11896/j.issn.1005-023X.2017.05.007
Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012
Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv 4(32):16674–16680. https://doi.org/10.1039/c4ra01343c
Zhao LL (2015) Fabrication of graphene oxide/polyethyleneimine layer-by-layer assembly film and its hydrogen barrier properties. Ph.d., dissertation, China University of Petroleum (East China)
Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750. https://doi.org/10.1016/j.polymdegradstab.2011.02.019
Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634. https://doi.org/10.1016/j.polymdegradstab.2012.11.006
Shi Y, Long Z, Yu B, Zhou K, Gui Z, Yuen RKK, Hu Y (2015) Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J Mater Chem A 3(33):17064–17073. https://doi.org/10.1039/c5ta04349b
Yang YB, Su LN, Wang EN (2014) Research progress of layer-by-layer self-assembly technology. Chem World 55(10):636–640. https://doi.org/10.19500/j.cnki.0367-6358.2014.10.017
Qiu X, Li Z, Li X, Zhang Z (2018) Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J 334:108–122. https://doi.org/10.1016/j.cej.2017.09.194
Standard Test Method for Flame Resistance of Textiles (Vertical Test) (2015) ASTM International
McKenna ST, Hull TR (2016) The fire toxicity of polyurethane foams. Fire Sci Rev 5:1–27. https://doi.org/10.1186/s40038-016-0012-3
Kim YS, Davis R (2014) Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550:184–189. https://doi.org/10.1016/j.tsf.2013.10.167
Krämer RH, Zammarano M, Linteris GT, Gedde UW, Gilman JW (2010) Heat release and structural collapse of flexible polyurethane foam. Polym Degrad Stab 95(6):1115–1122. https://doi.org/10.1016/j.polymdegradstab.2010.02.019
Holder KM, Cain AA, Plummer MG, Stevens BE, Odenborg PK, Morgan AB, Grunlan JC (2016) Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol Mater Eng 301(6):665–673. https://doi.org/10.1002/mame.201500327
Zhi M, Liu Q, Gao S, Zhao Y, Zhu X, Jia X (2019) Layer-by-layer assembled nanocoating containing MoS2 nanosheets and C60 for enhancing flame retardancy properties of flexible polyurethane foam. Mater Res Express 6(12):125312–125324. https://doi.org/10.1088/2053-1591/ab556b
Carosio F, Fina A (2019) Three organic/inorganic nanolayers on flexible foam allow retaining superior flame retardancy performance upon mechanical compression cycles. Front Mater 6:20. https://doi.org/10.3389/fmats.2019.00020
Hai Y, Wang C, Jiang S, Liu X (2019) Layer-by-layer assembly of aerogel and alginate toward self-extinguishing flexible polyurethane foam. Ind Eng Chem Res 59(1):475–483. https://doi.org/10.1021/acs.iecr.9b05590
Pan Y, Pan H, Yuan B, Hong N, Zhan J, Wang B, Song L, Hu Y (2015) Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam. Mater Chem Phys 163:107–115. https://doi.org/10.1016/j.matchemphys.2015.07.020
Carosio F, Ghanadpour M, Alongi J, Wagberg L (2018) Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr Polym 202:479–487. https://doi.org/10.1016/j.carbpol.2018.09.005
Park JH, Kim BS, Yoo YC, Khil MS, Kim HY (2008) Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via a layer-by-layer self-assembly. J Appl Polym Sci 107(4):2211–2216. https://doi.org/10.1002/app.27322
Cheng S, Liu X, Yun S, Luo H, Gao Y (2014) SiO2/TiO2 composite aerogels: Preparation via ambient pressure drying and photocatalytic performance. Ceram Int 40(9):13781–13786. https://doi.org/10.1016/j.ceramint.2014.05.093
Thirumal M, Singha NK, Khastgir D, Manjunath BS, Naik YP (2010) Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J Appl Polym Sci 116(4):2260–2268. https://doi.org/10.1002/app.31626
Haile M, Fomete S, Lopez ID, Grunlan JC (2015) Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. J Mater Sci 51(1):375–381. https://doi.org/10.1007/s10853-015-9258-8
Wang CQ, Lv HN, Sun J, Cai ZS (2014) Flame retardant and thermal decomposition properties of flexible polyurethane foams filled with several halogen-free flame retardants. Polym Eng Sci 54(11):2497–2507. https://doi.org/10.1002/pen.23794
Pan Y, Zhan J, Pan H, Wang W, Ge H, Song L, Hu Y (2015) A novel and effective method to fabricate flame retardant and smoke suppressed flexible polyurethane foam. RSC Adv 5(83):67878–67885. https://doi.org/10.1039/c5ra09553k
Chen YL, Gou XY, Cao ZW (2019) Preparation and progress of layered flame retardant nanocomposites. Eng Plast Appl 47(10):128–134
Zammarano M, Krämer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Technol 19(6):588–595. https://doi.org/10.1002/pat.1111
Davis R, Kim YS (2010) Fabrication, characterization, and flammability testing of multiwalled carbon nanotube layer-by-layer coated polyurethane foam, NIST Technical Note 1674. National Institute of Standards and Technology, Gaithersburg, MD
Kim YS, Davis R, Cain AA, Grunlan JC (2011) Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13):2847–2855. https://doi.org/10.1016/j.polymer.2011.04.023
Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2014) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Interfaces 7(1):101–111. https://doi.org/10.1021/am507045g
Smith RJ, Holder KM, Ruiz S, Hahn W, Song Y, Lvov YM, Grunlan JC (2018) Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability. Adv Func Mater 28(27):1703289. https://doi.org/10.1002/adfm.201703289
Pan HF (2015) Design of layer by layer flame retardant coatings on cotton fabric and flexible polyurethane foam and study on their properties. Ph.d., dissertation, University of Science and Technology of China
Doğan M, Turhan Y, Alkan M, Namli H, Turan P, Demirbaş Ö (2008) Functionalized sepiolite for heavy metal ions adsorption. Desalination 230(1–3):248–268. https://doi.org/10.1016/j.desal.2007.11.029
Pan Y, Liu L, Cai W, Hu Y, Jiang S, Zhao H (2019) Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl Clay Sci 168:230–236. https://doi.org/10.1016/j.clay.2018.11.014
Wang B, Zhou K, Wang B, Gui Z, Hu Y (2014) Synthesis and characterization of CuMoO4/Zn–Al layered double hydroxide hybrids and their application as a reinforcement in polypropylene. Ind Eng Chem Res 53(31):12355–12362. https://doi.org/10.1021/ie502232a
Kim YS, Harris R, Davis R (2012) Innovative approach to rapid growth of highly clay-filled coatings on porous polyurethane foam. ACS Macro Lett 1:820–824. https://doi.org/10.1021/mz300102h
Kim YS, Li YC, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6(3):2146–2152. https://doi.org/10.1021/am405259n
Cain AA, Plummer MGB, Murray SE, Bolling L, Regev O, Grunlan JC (2014) Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer. J Mater Chem A 2(41):17609–17617. https://doi.org/10.1039/c4ta03541k
Chen P, Zhao Y, Wang W, Zhang T, Song S (2019) Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan(-)montmorillonite nanosheet membrane assembled on flexible polyurethane foam. Polymers (Basel) 11(2):213. https://doi.org/10.3390/polym11020213
Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6(19):16903–16908. https://doi.org/10.1021/am504455k
Holder KM, Huff ME, Cosio MN, Grunlan JC (2014) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50(6):2451–2458. https://doi.org/10.1007/s10853-014-8800-4
Meng Z, Huang AP, Zhang WX, Guo XJ, Zhang YX, Zhu BC (2017) Research progress in preparation and application of graphene oxide. Synth Mater Aging Appl 46(06):95-99+111. https://doi.org/10.16584/j.cnki.issn1671-5381.2017.06.020
Bao C, Song L, Wilkie CA, Yuan B, Guo Y, Hu Y, Gong X (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22(32):16399–16406. https://doi.org/10.1039/c2jm32500d
Maddalena L, Carosio F, Gomez J, Saracco G, Fina A (2018) Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym Degrad Stab 152:1–9. https://doi.org/10.1016/j.polymdegradstab.2018.03.013
Zhang X, Shen Q, Zhang X, Pan H, Lu Y (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51(23):10361–10374. https://doi.org/10.1007/s10853-016-0247-3
Maddalena L, Gomez J, Fina A, Carosio F (2021) Effects of graphite oxide nanoparticle size on the functional properties of layer-by-layer coated flexible foams. Nanomaterials (Basel) 11 (2):266. https://doi.org/10.3390/nano11020266
Pan H, Yu B, Wang W, Pan Y, Song L, Hu Y (2016) Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties. RSC Adv 6(115):114304–114312. https://doi.org/10.1039/c6ra15522g
Pan H, Lu Y, Song L, Zhang X, Hu Y (2016) Fabrication of binary hybrid-filled layer-by-layer coatings on flexible polyurethane foams and studies on their flame-retardant and thermal properties. RSC Adv 6(82):78286–78295. https://doi.org/10.1039/c6ra03760g
Wang L, Su S, Chen D, Wilkie CA (2009) Variation of anions in layered double hydroxides: Effects on dispersion and fire properties. Polym Degrad Stab 94(5):770–781. https://doi.org/10.1016/j.polymdegradstab.2009.02.003
Li YC, Yang YH, Shields J, Davis R (2015) Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer 56:284–292. https://doi.org/10.1016/j.polymer.2014.11.023
Liu L, Wang W, Hu Y (2015) Layered double hydroxide-decorated flexible polyurethane foam: significantly improved toxic effluent elimination. RSC Adv 5(118):97458–97466. https://doi.org/10.1039/c5ra19414h
Yang YH, Li YC, Shields J, Davis R (2015) Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.41767
Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450. https://doi.org/10.1149/1.1393216
Wang W, Pan Y, Pan H, Yang W, Liew KM, Song L, Hu Y (2016) Synthesis and characterization of MnO2 nanosheets based multilayer coating and applications as a flame retardant for flexible polyurethane foam. Compos Sci Technol 123:212–221. https://doi.org/10.1016/j.compscitech.2015.12.014
Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128. https://doi.org/10.1016/j.compscitech.2014.11.017
Pan H, Shen Q, Zhang Z, Yu B, Lu Y (2018) MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties. J Mater Sci 53(12):9340–9349. https://doi.org/10.1007/s10853-018-2199-2
Feng X, Xing W, Song L, Hu Y (2014) In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J Mater Chem A 2(33):13299–13308. https://doi.org/10.1039/c4ta01885k
Zhang J, Kong Q, Yang L, Wang D-Y (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18(10):3066–3074. https://doi.org/10.1039/c5gc03048j
Mu X, Yuan B, Pan Y, Feng X, Duan L, Zong R, Hu Y (2017) A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams. Mater Chem Phys 191:52–61. https://doi.org/10.1016/j.matchemphys.2017.01.023
Pan Y, Cai W, Du J, Song L, Hu Y, Zhao H (2020) Lanthanum phenylphosphonate–based multilayered coating for reducing flammability and smoke production of flexible polyurethane foam. Polym Adv Technol 31(6):1330–1339. https://doi.org/10.1002/pat.4862
Liu D, Zhang M, He L, Chen Y, Lei W (2017) Layer-by-layer assembly fabrication of porous boron nitride coated multifunctional materials for water cleaning. Adv Mater Interfaces 4(16):1700392–1700400. https://doi.org/10.1002/admi.201700392
Qiu X, Li Z, Li X, Yu L, Zhang Z (2019) Construction and flame-retardant performance of layer-by-layer assembled hexagonal boron nitride coatings on flexible polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.47839
Davesne A-L, Lazar S, Bellayer S, Qin S, Grunlan JC, Bourbigot S, Jimenez M (2019) Hexagonal boron nitride platelet-based nanocoating for fire protection. ACS Appl Nano Mater 2(9):5450–5459. https://doi.org/10.1021/acsanm.9b01055
Davis R, Li YC, Gervasio M, Luu J, Kim YS (2015) One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams. ACS Appl Mater Interfaces 7(11):6082–6092. https://doi.org/10.1021/acsami.5b01105
Pan H, Pan Y, Wang W, Song L, Hu Y, Liew KM (2014) Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind Eng Chem Res 53(37):14315–14321. https://doi.org/10.1021/ie502215p
Wang W (2017) Study on flame retardancy of binary hybrids (CNT/GO) based on graphene oxide and carbon nanotube. Ind Saf Dust Control 43(3):33–37. https://doi.org/10.3969/j.issn.1001-425X.2017.03.010
Wang W, Pan H, Shi Y, Yu B, Pan Y, Liew KM, Song L, Hu Y (2015) Sandwichlike coating consisting of alternating montmorillonite and β-FeOOH for reducing the fire hazard of flexible polyurethane foam. ACS Sustain Chem Eng 3(12):3214–3223. https://doi.org/10.1021/acssuschemeng.5b00805
Pan H, Lu Y, Song L, Zhang X, Hu Y (2016) Construction of layer-by-layer coating based on graphene oxide/β-FeOOH nanorods and its synergistic effect on improving flame retardancy of flexible polyurethane foam. Compos Sci Technol 129:116–122. https://doi.org/10.1016/j.compscitech.2016.04.018
Carosio F, Negrell-Guirao C, Alongi J, David G, Camino G (2015) All-polymer layer by layer coating as efficient solution to polyurethane foam flame retardancy. Eur Polym J 70:94–103. https://doi.org/10.1016/j.eurpolymj.2015.07.001
Wang X, Pan Y-T, Wan J-T, Wang D-Y (2014) An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Adv 4(86):46164–46169. https://doi.org/10.1039/c4ra07972h
De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145. https://doi.org/10.1016/s0141-3910(02)00266-5
Li P, Liu C, Xu YJ, Jiang ZM, Liu Y, Zhu P (2020) Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LbL: flame retardancy, smoke suppression and flame-retardant mechanism. Polym Degrad Stab 181:109302. https://doi.org/10.1016/j.polymdegradstab.2020.109302
Pan Y, Zhan J, Pan H, Wang W, Tang G, Song L, Hu Y (2016) Effect of fully biobased coatings constructed via layer-by-layer assembly of chitosan and lignosulfonate on the thermal, flame retardant, and mechanical properties of flexible polyurethane foam. ACS Sustain Chem Eng 4(3):1431–1438. https://doi.org/10.1021/acssuschemeng.5b01423
Li YC, Yang YH, Kim YS, Shields J, Davis R (2014) DNA-based nanocomposite biocoatings for fire-retarding polyurethane foam. Green Mater 2(3):144–152. https://doi.org/10.1680/gmat.14.00003
Nabipour H, Wang X, Song L, Hu Y (2020) A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr Polym 246:116641. https://doi.org/10.1016/j.carbpol.2020.116641
Xu W, Chen R, Du Y, Wang G (2020) Design water-soluble phenolic/zeolitic imidazolate framework-67 flame retardant coating via layer-by-layer assembly technology: enhanced flame retardancy and smoke suppression of flexible polyurethane foam. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109152
Zhao S, Yin L, Zhou Q, Liu C, Zhou K (2020) In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144700
Zhou W-H, Lu C-H, Guo X-C, Chen F-R, Yang H-H, Wang X-R (2010) Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J Mater Chem 20(5):880–883. https://doi.org/10.1039/b916619j
Dong Z, Wang D, Liu X, Pei X, Chen L, Jin J (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2(14):5034–5040. https://doi.org/10.1039/c3ta14751g
Cho JH, Vasagar V, Shanmuganathan K, Jones AR, Nazarenko S, Ellison CJ (2015) Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams. Chem Mater 27(19):6784–6790. https://doi.org/10.1021/acs.chemmater.5b03013
Qiu X, Kundu CK, Li Z, Li X, Zhang Z (2019) Layer-by-layer-assembled flame-retardant coatings from polydopamine-induced in situ functionalized and reduced graphene oxide. J Mater Sci 54(21):13848–13862. https://doi.org/10.1007/s10853-019-03879-w
Babrauskas V, Peacock RD (1992) Heat release rate: The single most important variable in fire hazard. Fire Saf J 18(3):255–272. https://doi.org/10.1016/0379-7112(92)90019-9
Kim Y-G, Kim HS, Jo SM, Kim SY, Yang BJ, Cho J, Lee S, Cha JE (2018) Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels. Chem Eng J 351:473–481. https://doi.org/10.1016/j.cej.2018.06.102
Chen HB, Shen P, Chen MJ, Zhao HB, Schiraldi DA (2016) Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl Mater Interfaces 8(47):32557–32564. https://doi.org/10.1021/acsami.6b11659
Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22(43):23057–23063. https://doi.org/10.1039/c2jm35
Shi X, Yang P, Peng X, Huang C, Qian Q, Wang B, He J, Liu X, Li Y, Kuang T (2019) Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer 170:65–75. https://doi.org/10.1016/j.polymer.2019.03.008
Acknowledgements
The authors acknowledge the financial support from the National Key R&D Program of China (No. 2018YFC0809506), National Natural Science Foundation of China (No. U1633203), Sichuan Science and Technology Program (No. 2018GZYZF0069) and General Program of Civil Aviation Flight University of China (No. J2018-07, J2019-119).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Handling Editor: Jaime Grunlan.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Q., Gao, S., Zhao, Y. et al. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. J Mater Sci 56, 9605–9643 (2021). https://doi.org/10.1007/s10853-021-05904-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-021-05904-3


