Skip to main content
Log in

Grain boundary migration and deformation mechanism influenced by heterogeneous precipitate

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 13 August 2021

This article has been updated

Abstract

Understanding the interaction between heterogeneous precipitates and grain boundaries (GBs) is of great significance for tailoring the stability and mechanical properties of nanograined materials. In this work, the nanoscale interaction between the cylindrical precipitate and the migrating GB is investigated by atomic simulation. The results show that the resistance for GB migration can be increased by decreasing the direction angle \(\alpha\) (the angle between the axis of the precipitate and the tilt axis of GB). For the larger precipitate, the influence of direction angle is more pronounced. With the increase in shear strain, the interaction between the specific precipitate and GB changes the material deformation mechanism from “GB migration” to “GB migration accompanied with activated dislocations or GB deformation,” which contributes to the softening of the material. By simultaneously tuning the direction angle and size of heterogeneous precipitates, the GB deformation can be strongly inhibited and the stability of GBs can be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Change history

References

  1. Darling KA, Rajagopalan M, Komarasamy M, Bhatia MA, Hornbuckle BC, Mishra RS, Solanki KN (2016) Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537:378. https://doi.org/10.1038/nature19313

    Article  CAS  Google Scholar 

  2. Hu J, Shi YN, Sauvage X, Sha G, Lu K (2017) Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355:1292. https://doi.org/10.1126/science.aal5166

    Article  CAS  Google Scholar 

  3. Gleiter H (1990) Nanocrystalline materials. Mater Sci Eng, A 3:223. https://doi.org/10.1016/0921-5093(89)90083-X

    Article  Google Scholar 

  4. Andrievski RA (2014) Review of thermal stability of nanomaterials. J Mater Sci 49:1449. https://doi.org/10.1007/s10853-013-7836-1

    Article  CAS  Google Scholar 

  5. Zhou X, Li XY, Lu K (2018) Enhanced thermal stability of nanograined metals below a critical grain size. Science 360:526. https://doi.org/10.1126/science.aar6941

    Article  CAS  Google Scholar 

  6. Zhou X, Li XY, Lu K (2019) Size dependence of grain boundary migration in metals under mechanical loading. Phys Rev Lett 122:126101. https://doi.org/10.1103/PhysRevLett.122.126101

    Article  CAS  Google Scholar 

  7. Thomas SL, Chen K, Han J, Purohit PK, Srolovitz DJ (2017) Reconciling grain growth and shear-coupled grain boundary migration. Nat Commun 8:1764. https://doi.org/10.1038/s41467-017-01889-3

    Article  CAS  Google Scholar 

  8. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305:654. https://doi.org/10.1126/science.1098741

    Article  CAS  Google Scholar 

  9. Cao CZ, Yao GC, Jiang L et al (2019) Bulk ultrafine grained/nanocrystalline metals via slow cooling. SciAdv. https://doi.org/10.1126/sciadv.aaw2398

    Article  Google Scholar 

  10. Kalidindi AR, Schuh CA (2017) Stability criteria for nanocrystalline alloys. Acta Mater 132:128. https://doi.org/10.1016/j.actamat.2017.03.029

    Article  CAS  Google Scholar 

  11. Abdeljawad F, Ping L, Argibay N, Clark BG, Boyce BL, Foiles SM (2017) Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater 126:528. https://doi.org/10.1016/j.actamat.2016.12.036

    Article  CAS  Google Scholar 

  12. Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789. https://doi.org/10.1016/0001-6160(62)90092-5

    Article  CAS  Google Scholar 

  13. Smith CS (1948) Grains, phases, and interfaces: an introduction of microstructure. Trans Metall Soc AIME 175:15

    Google Scholar 

  14. Jiang L, Li JK, Cheng PM et al (2014) Microalloying ultrafine grained al alloys with enhanced ductility. Scientific Rep 4:3605. https://doi.org/10.1038/srep03605

    Article  CAS  Google Scholar 

  15. Huang TY, Kalidindi AR, Schuh CA (2018) Grain growth and second-phase precipitation in nanocrystalline aluminum-manganese electrodeposits. J Mater Sci 53:3709. https://doi.org/10.1007/s10853-017-1764-4

    Article  CAS  Google Scholar 

  16. Darling KA, Roberts AJ, Mishin Y, Mathaudhu SN, Kecskes LJ (2013) Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J Alloys Compd 573:142. https://doi.org/10.1016/j.jallcom.2013.03.177

    Article  CAS  Google Scholar 

  17. Pa M, Ferry M, Chandra T (1998) Five decades of the Zener equation. ISIJ Int 38:913. https://doi.org/10.2355/isijinternational.38.913

    Article  Google Scholar 

  18. He A, Ivey DG (2015) Microstructural study of Sn films electrodeposited on Cu substrates: Sn whiskers and Cu6Sn5 precipitates. J Mater Sci 50:2944. https://doi.org/10.1007/s10853-015-8859-6

    Article  CAS  Google Scholar 

  19. Sunkari U, Reddy SR, Rathod BDS, Kumar SSS, Saha R, Chatterjee S, Bhattacharjee PP (2020) Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy. Scientific Rep. https://doi.org/10.1038/s41598-020-63038-z

    Article  Google Scholar 

  20. Zuo XW, Qu L, Zhao CC et al (2016) Nucleation and growth of gamma-Fe precipitate in Cu-2% Fe alloy aged under high magnetic field. J Alloys Compd 662:355. https://doi.org/10.1016/j.jallcom.2015.12.046

    Article  CAS  Google Scholar 

  21. Wang FL, Bhattacharyya JJ, Agnew SR (2016) Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys. Mater SciEngStruct Mater Prop Microstruct Process 666:114. https://doi.org/10.1016/j.msea.2016.04.056

    Article  CAS  Google Scholar 

  22. Fan H, Zhu Y, El-Awady JA, Raabe D (2018) Precipitation hardening effects on extension twinning in magnesium alloys. Int J Plast 106:186. https://doi.org/10.1016/j.ijplas.2018.03.008

    Article  CAS  Google Scholar 

  23. Ivanov VA, Mishin Y (2008) Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Physical Review B 78:064106. https://doi.org/10.1103/PhysRevB.78.064106

    Article  CAS  Google Scholar 

  24. Homer ER, Foiles SM, Holm EA, Olmsted DL (2013) Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries. Acta Mater 61:1048. https://doi.org/10.1016/j.actamat.2012.10.005

    Article  CAS  Google Scholar 

  25. Sun G, Xu J, Harrowell P (2018) The mechanism of the ultrafast crystal growth of pure metals from their melts. Nat Mater 17:881. https://doi.org/10.1038/s41563-018-0174-6

    Article  CAS  Google Scholar 

  26. You LJ, Hu LJ, Xie YP, Zhao SJ (2016) Influence of Cu precipitation on tensile properties of Fe-Cu-Ni ternary alloy at different temperatures by molecular dynamics simulation. Comput Mater Sci 118:236. https://doi.org/10.1016/j.commatsci.2016.03.018

    Article  CAS  Google Scholar 

  27. Li J, Chen H, Fang Q, Jiang C, Liu Y, Liaw PK (2020) Unraveling the dislocation–precipitate interactions in high-entropy alloys. Int J Plast 133:102819. https://doi.org/10.1016/j.ijplas.2020.102819

    Article  CAS  Google Scholar 

  28. Li J, Liu B, Fang QH, Huang ZW, Liu YW (2017) Atomic-scale strengthening mechanism of dislocation-obstacle interaction in silicon carbide particle-reinforced copper matrix nanocomposites. Ceram Int 43:3839. https://doi.org/10.1016/j.ceramint.2016.12.040

    Article  CAS  Google Scholar 

  29. Zhang L, Shibuta Y, Lu C, Huang XX (2019) Interaction between nano-voids and migrating grain boundary by molecular dynamics simulation. Acta Mater 173:206. https://doi.org/10.1016/j.actamat.2019.05.020

    Article  CAS  Google Scholar 

  30. Zhang L, Lu C, Tieu K, Shibuta Y (2018) Dynamic interaction between grain boundary and stacking fault tetrahedron. Scripta Mater 144:78. https://doi.org/10.1016/j.scriptamat.2017.09.027

    Article  CAS  Google Scholar 

  31. Morrison RL, Fensin SJ, Carter JLW (2019) Exploration of the sliding behavior of a Σ11 grain boundary with precipitates in Ni–Al system using molecular dynamics. Materialia 7:100383. https://doi.org/10.1016/j.mtla.2019.100383

    Article  CAS  Google Scholar 

  32. Bonny G, Pasianot RC, Castin N, Malerba L (2009) Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philos Mag 89:3531. https://doi.org/10.1080/14786430903299824

    Article  CAS  Google Scholar 

  33. Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B, Schmauder S (2012) Multiscale simulations on the coarsening of Cu-rich precipitates in alpha-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations. Acta Mater 60:6961. https://doi.org/10.1016/j.actamat.2012.08.051

    Article  Google Scholar 

  34. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  35. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/01501

    Article  Google Scholar 

  36. Koju RK, Darling KA, Kecskes LJ, Mishin Y (2016) Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68:1596. https://doi.org/10.1007/s11837-016-1899-9

    Article  CAS  Google Scholar 

  37. Khalajhedayati A, Pan ZL, Rupert TJ (2016) Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun 7:10802. https://doi.org/10.1038/ncomms10802

    Article  CAS  Google Scholar 

  38. Khalajhedayati A, Rupert TJ (2015) High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67:2788. https://doi.org/10.1007/s11837-015-1644-9

    Article  CAS  Google Scholar 

  39. Oruganti R, Karadge M, Swaminathan S (2011) Damage mechanics-based creep model for 9–10%Cr ferritic steels. Acta Mater 59:2145. https://doi.org/10.1016/j.actamat.2010.12.015

    Article  CAS  Google Scholar 

  40. Robson JD, Stanford N, Barnett MR (2011) Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Mater 59:1945. https://doi.org/10.1016/j.actamat.2010.11.060

    Article  CAS  Google Scholar 

  41. Stanford N, Barnett MR (2009) Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater SciEng A 516:226. https://doi.org/10.1016/j.msea.2009.04.001

    Article  CAS  Google Scholar 

  42. Wang F, Agnew SR (2016) Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int J Plast 81:63. https://doi.org/10.1016/j.ijplas.2016.01.012

    Article  CAS  Google Scholar 

  43. Li XY, Zhou X, Lu K (2020) Rapid heating induced ultrahigh stability of nanograined copper. SciAdv. https://doi.org/10.1126/sciadv.aaz8003

    Article  Google Scholar 

  44. Romanov AE, Kolesnikova AL (2009) Application of disclination concept to solid structures. Prog Mater Sci 54:740. https://doi.org/10.1016/j.pmatsci.2009.03.002

    Article  CAS  Google Scholar 

  45. Wang C, Du K, Song K et al (2018) Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys Rev Lett 120:186102. https://doi.org/10.1103/PhysRevLett.120.186102

    Article  CAS  Google Scholar 

  46. Keyhani A, Roumina R (2018) Dislocation-precipitate interaction map. Comput Mater Sci 141:153. https://doi.org/10.1016/j.commatsci.2017.09.036

    Article  CAS  Google Scholar 

  47. Scattergood RO, Bacon DJ (1975) The Orowan mechanism in anisotropic crystals. Philos Mag 31:20. https://doi.org/10.1080/14786437508229295

    Article  Google Scholar 

  48. Zhu Q, Huang Q, Guang C et al (2020) Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat Commun 11:1. https://doi.org/10.1038/s41467-020-16869-3

    Article  CAS  Google Scholar 

  49. Priedeman JL, Olmsted DL, Homer ER (2017) The role of crystallography and the mechanisms associated with migration of incoherent twin grain boundaries. Acta Mater 131:553. https://doi.org/10.1016/j.actamat.2017.04.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the supports from the National Key Research and Development Program of China (2016YFB0700300) and the National Natural Science Foundation of China (51871092, 11772122, 12072109 and 52020105013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, F., Li, F., Fang, Q. et al. Grain boundary migration and deformation mechanism influenced by heterogeneous precipitate. J Mater Sci 56, 9458–9469 (2021). https://doi.org/10.1007/s10853-021-05843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05843-z

Navigation