Skip to main content

Advertisement

Log in

Synthesis of oxygen vacancies implanted ultrathin WO3-x nanorods/reduced graphene oxide anode with outstanding Li-ion storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal oxides have shown an extraordinary potential for lithium-storage capability to date. However, it remains enormous challenge to gain high capacities, good rate performance and cyclability due to their inferior conductivity. To address this issue, oxygen vacancies (VOs) implanted ultrathin WO3 nanorods (the diameter around 5 nm and the length less than 100 nm) composed with reduced graphene oxide (namely WO3-x/rGO), were synthesized by proposing a logical design. For the sake of better showing the outcome of such configuration, holy nanosheets of pure WO3 anode were proposed to compare with nanorods WO3-x/rGO one in terms of electrochemical properties, and they were obtained via annealing H2WO4/rGO precursor in air and argon atmosphere with the same annealing ramp, respectively. By contrast, both electron paramagnetic resonance and X-ray photoelectron spectroscopic characterizations demonstrate the existence of VOs in WO3-x/rGO composite. The generation of VOs together with the reserve of rGO, the conductivity of WO3-x/rGO anode is distinctly enhanced, which is then verified by the compared electrochemical performance in this work. It is clearly shown that the WO3-x/rGO nanocomposite displays a capacity of 745 mAh g−1 at a current density of 0.1 A g−1 after 200 cycles and excellent cycling stability up to 1000 cycles with capacity of 428 mAh g−1 at 1 A g−1. These findings exhibit that nanorods WO3-x/rGO nanocomposite is a promising candidate for high-performance Li-ion battery anode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang KHL, Li G, Spurgeon SR, Wang L, Yan P, Wang Z, Meng G, Varga T, Bowden ME, Zhu Z, Wang C, Yingge D (2018) Creation and ordering of oxygen vacancies at WO3−δ and perovskite interfaces. ACS Appl Mater Interfaces 20:17480–17486

    Article  Google Scholar 

  2. Demasius KU, Phung T, Zhang W, Hughes BP, Yang SH, Kellock A, Han W, Pushp A, Parkin SSP (2016) Enhanced spin-orbit torques by oxygen incorporation in tungsten films. Nat Commun 7:10644

    Article  CAS  Google Scholar 

  3. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V (2017) Bruce Dunn, oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater 4:454–460

    Article  Google Scholar 

  4. Zhang N, Tsang EP, Chen J, Fang Z, Zhao D (2020) Critical role of oxygen vacancies in heterogeneous fenton oxidation over ceria-based catalysts. J Coll Interface Sci 558:163–172

    Article  Google Scholar 

  5. Kai Y, Lou LL, Liu S, Zhou W (2020) Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts. Adv Sci 7:1901970

    Article  Google Scholar 

  6. Zyabkin DV, Gunnlaugsson HP, Gonçalves JN, Bharuth-Ram K, Qi B, Unzueta I, Naidoo D, Mantovan R, Masenda H, Ólafsson S, Peters G, Schell J, Vetter U, Dimitrova A, Krischok S, Schaaf P (2020) Experimental and theoretical study of electronic and hyperfine properties of hydrogenated anatase (TiO2): defect interplay and thermal stability. J Phys Chem C 13:7511–7522

    Article  Google Scholar 

  7. Ping Y, Rocca D, Galli G (2013) Optical properties of tungsten trioxide from first-principles calculations. Phys Rev B 16:165203

    Article  Google Scholar 

  8. Li Y, Tang Z, Zhang J, Zhang Z (2016) Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J Phys Chem C 18:9750–9763

    Article  Google Scholar 

  9. Zhao Y, Brocks G, Genuit H, Lavrijsen R, Verheijen MA, Bieberle-Hütter A (2019) Boosting the performance of WO3/n-Si heterostructures for photoelectrochemical water splitting: from the role of Si to interface engineering. Adv Energy Mater 26:1900940

    Article  Google Scholar 

  10. Jadwiszczak M, Jakubow-Piotrowska K, Kedzierzawski P, Bienkowski K, Augustynski J (2020) Highly efficient sunlight-driven seawater splitting in a photoelectrochemical cell with chlorine evolved at nanostructured WO3 photoanode and hydrogen stored as hydride within metallic cathode. Adv Energy Mater 3:1903213

    Article  Google Scholar 

  11. Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y (2020) Facile preparation of WO3−x dots with remarkably low toxicity and uncompromised activity as co-reactants for clinical diagnosis by electrochemiluminescence. Angew Chem Int Edition 38:16747–16754

    Article  Google Scholar 

  12. Adib MR, Kondalkar VV, Lee K (2020) Development of highly sensitive ethane gas sensor based on 3D WO3 nanocone structure integrated with low-powered in-plane microheater and temperature sensor. Adv Mater Technol 5:2000009

    Article  CAS  Google Scholar 

  13. Karthish Manthiram A, Alivisatos P (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 9:3995–3998

    Article  Google Scholar 

  14. Molinari A, Witte R, Neelisetty KK, Gorji S, Kübel C, Münch I, Wöhler F, Hahn L, Hengsbach S, Bade K, Hahn H, Kruk R (2020) Configurable resistive response in BaTiO3 ferroelectric memristors via electron beam radiation. Adv Mater 12:1907541

    Article  Google Scholar 

  15. Pan X, Yang MQ, Xianzhi F, Zhang N, Yi-Jun X (2013) Defective TiO2 with oxygen vacancies: synthesis properties and photocatalytic applications. Nanoscale 9:3601–3614

    Article  Google Scholar 

  16. Zhang M, Averseng F, Haque F, Borghetti P, Krafft JM, Baptiste B, Costentin G, Stankic S (2019) Defect-related multicolour emissions in ZnO smoke: from violet, over green to yellow. Nanoscale 11:5102–5115

    Article  CAS  Google Scholar 

  17. Kalanur SS, Yoo IlH, Cho IS, Seo H (2019) Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents. Electrochim Acta 2019:517–527

    Article  Google Scholar 

  18. Soltani T, Tayyebi A, Hong H, Hassan M, Mirfasih; Byeong-Kyu Lee, (2019) A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance. Sol Energy Mater Sol Cells 191:39–49

    Article  CAS  Google Scholar 

  19. Paik T, Cargnello M, Gordon TR, Zhang S, Yun H, Lee JD, Woo HY, Oh SJ, Kagan CR, Fornasiero P, Murray CB (2018) Photocatalytic hydrogen evolution from substoichiometric colloidal WO3–x nanowires. ACS Energy Lett 8:1904–1910

    Article  Google Scholar 

  20. Sun W, Yeung MT, Lech AT, Lin CW, Lee C, Li T, Duan X, Zhou J, Kaner RB (2015) High surface area tunnels in hexagonal WO3. Nano Lett 7:4834–4838

    Article  Google Scholar 

  21. Chen Z, Peng Y, Liu F, Le Z, Zhu J, Shen G, Zhang D, Wen M, Xiao S, Liu CP, Yunfeng L, Li H (2015) Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett 10:6802–6808

    Article  Google Scholar 

  22. Bin D, Ren F, Wang Y, Zhai C, Wang C, Guo J, Yang P, Yukou D (2015) Pd-nanoparticle-supported PDDA-functionalized graphene as a promising catalyst for alcohol oxidation. Chem Asian J 3:667–673

    Article  Google Scholar 

  23. Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 8:6425–6433

    Article  Google Scholar 

  24. Liu H, Moon KS, Li J, Xie Y, Liu J, Sun Z, Longsheng L, Tang Y, Wong CP (2020) Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy 77:105058

    Article  CAS  Google Scholar 

  25. Wang S, Gao R, Zhou K (2019) The influence of cerium dioxide functionalized reduced graphene oxide on reducing fire hazards of thermoplastic polyurethane nanocomposites. J Coll Interface Sci 536:127–134

    Article  CAS  Google Scholar 

  26. Azam A, Kim J, Park J, Novak TG, Tiwari AP, Song SH, Kim B, Jeon S (2018) Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett 9:5646–5651

    Article  Google Scholar 

  27. Liu G, Han J, Zhou X, Huang L, Zhang F, Wang X, Ding C, Zheng X, Han H, Li C (2013) Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. J Catal 307:148–152

    Article  CAS  Google Scholar 

  28. Dong Y, Xia Y, Chui YS, Cao C, Zapien JA (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sour 275:769–776

    Article  CAS  Google Scholar 

  29. Xiong X, Yang C, Wang G, Lin Y, Xing O, Wang JH, Zhao B, Liu M, Lin Z (2017) Kevin Huang (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 8:1757–1763

    Article  Google Scholar 

  30. Yang J, Chang Y, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 4:1299–1307

    Article  Google Scholar 

  31. Gionco C, Paganini MC, Giamello E, Burgess R, Di Valentin C, Pacchioni G (2013) Paramagnetic defects in polycrystalline Zirconia: an EPR and DFT study. Chem Mater 11:2243–2253

    Article  Google Scholar 

  32. Braun A, Akgul FA, Chen Q, Erat S, Huang TW, Jabeen N, Liu Z, Mun BS, Mao SS, Zhang X (2012) Observation of substrate orientation-dependent oxygen defect filling in thin WO3−δ/TiO2 pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature. Chem Mater 17:3473–3480

    Article  Google Scholar 

  33. Zhang M, Averseng F, Krafft JM, Borghetti P, Costentin G, Stankic S (2020) Controlled formation of native defects in ultrapure ZnO for the assignment of green emissions to oxygen vacancies. J Phys Chem C 23:12696–12704

    Article  Google Scholar 

  34. López N, Daniel Prades J, Hernández-Ramírez F, Morante JR, Pan J, Mathur S (2010) Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2−x under different gas environments. Phys Chem Chem Phys 10:2401–2406

    Article  Google Scholar 

  35. Zhang Z, Zuo F, Wan C, Dutta A, Kim J, Rensberg RJ, Nawrodt HH, Park TJ, Larrabee XG (2017) Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies. Phys Rev Appl 3:034008

    Article  Google Scholar 

  36. Samal R, Chakraborty B, Saxena M, Late DJ, Rout CS (2019) Facile production of mesoporous WO3-rGO hybrids for high-performance supercapacitor electrodes: an experimental and computational study. ACS Sustain Chem Eng 2:2350–2359

    Article  Google Scholar 

  37. Vasilopoulou M, Kostis I, Vourdas N, Papadimitropoulos G, Douvas A, Boukos N, Kennou S, Davazoglou D (2014) Influence of the oxygen substoichiometry and of the hydrogen incorporation on the electronic band structure of amorphous tungsten oxide films. J Phys Chem C 24:12632–12641

    Article  Google Scholar 

  38. Zhang KHL, Li G, Spurgeon SR, Wang L, Yan P, Wang Z, Meng G, Varga T, Bowden ME, Zhu Z (2018) Creation and ordering of oxygen vacancies at WO3−δ and perovskite interfaces. ACS Appli Mater Interfaces 20:17480–17486

    Article  Google Scholar 

  39. Peng L, Fang Z, Zhu Y, Yan C, Guihua Y (2018) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater 9:1702179

    Article  Google Scholar 

  40. Pomerantseva E, Gogotsi Y (2017) Two-dimensional heterostructures for energy storage. Nat Energy 7:1–6

    Google Scholar 

  41. He Y, Meng G, Xiao H, Luo L, Shao Y (2016) Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca. Angew Chem Int Edit 128:6352–6355

    Article  Google Scholar 

  42. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 12:4532–4539

    Article  Google Scholar 

  43. Sarkar A, Manoha CV, Mitra S (2020) A simple approach to minimize the first cycle irreversible loss of sodium titanate anode towards the development of sodium-ion battery. Nano Energy 70:104520

    Article  CAS  Google Scholar 

  44. Tokranov A, Sheldon BW, Li C, Minne S, Xiao X (2014) In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries. ACS Appl Mater Interfaces 9:6672–6686

    Article  Google Scholar 

  45. Yao W, Xu Z, Xu X, Xie Y, Qiu W, Xu J, Zhang D (2018) Two-dimensional holey ZnFe2O4 nanosheet/reduced graphene oxide hybrids by self-link of nanoparticles for high-rate lithium storage. Electrochim Acta 292:390–398

    Article  CAS  Google Scholar 

  46. Pi-Guey S, Peng SL (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405

    Article  Google Scholar 

  47. Lee K, Shin S, Degen T, Lee W, Yoon YS (2017) In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy 32:397–407

    Article  CAS  Google Scholar 

  48. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, Khaled U, Akhtar MS, Shahid MM (2020) Reduced graphene/nanostructured cobalt oxide nanocomposite for enhanced electrochemical performance of supercapacitor applications. J Coll Interface Sci 558:68–77

    Article  Google Scholar 

  49. Liu L, Mei Z, Tang A, Azarov A, Kuznetsov AY, Xue Q, Xiaolong D (2016) Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys Rev B 23:235305

    Article  Google Scholar 

  50. Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X (2017) Oxygen vacancies evoked blue TiO2 nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater 27:1700856

    Article  Google Scholar 

  51. Lee H, Kim YIl, Park JK, Choi JW (2012) Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem Commun 67:8416–8418

    Article  Google Scholar 

  52. Zha C, He D, Zou J, Shen L, Zhang X, Wang Y, Kung HH, Bao N (2014) A minky-dot-fabric-shaped composite of porous TiO2 microsphere/reduced graphene oxide for lithium ion batteries. J Mater Chem A 40:16931–16938

    Article  Google Scholar 

  53. Zhao L, Chen G, Yan T, Zhang J, Shi L, Zhang D (2010) Sandwich-like C@SnS@TiO2 anodes with high power and long cycle for Li-ion storage. ACS Appl Mater Interfaces 5:5857–5865

    Google Scholar 

  54. Yao X, Zhao C, Kong J, Huiqing W, Zhou D, Xuehong L (2014) Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. Chem Commun 93:14597–14600

    Article  Google Scholar 

  55. Zhang K, Han X, Zhe H, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 3:699–728

    Article  Google Scholar 

  56. Li Z, Ding J, Wang H, Cui K, Stephenson T, Karpuzov D, Mitlin D (2015) High rate SnO2–graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 15:369–378

    Article  CAS  Google Scholar 

  57. Han J, Kong D, Lv W, Tang DM, Han D, Zhang C, Liu D, Xiao Z, Zhang X, Xiao J, He X, Hsia FC, Zhang C, Tao Y, Golberg D, Kang F, Zhi L, Yang QH (2018) Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat Commun 1:402

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The New Style Think Tank of Shaanxi Universities (Research Center for Auxiliary Chemistry and New Materials Development, Shaanxi University of Science and Technology) with the grant no. ACNM-202005, and Research Starting Foundation of Shaanxi University of Science and Technology (grant no. 2018BJ-21 and no. 2016TPJS-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaohui Du.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Sun, H., Guo, Y. et al. Synthesis of oxygen vacancies implanted ultrathin WO3-x nanorods/reduced graphene oxide anode with outstanding Li-ion storage. J Mater Sci 56, 7573–7586 (2021). https://doi.org/10.1007/s10853-020-05747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05747-4

Navigation