Skip to main content

Advertisement

Log in

Improved performance of sulfonated poly ether ether ketone/three-dimensional hierarchical molybdenum disulfide nanoflower composite proton exchange membrane for fuel cells

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As one of the most essential components of fuel cells, the commercialized Nafion-based proton exchange membranes(PEMs) suffer from several drawbacks like high cost and methanol permeability. The aim of this work is to fabricate a high performance PEM with combined low cost and methanol permeability together with high proton conductivity. Three-dimensional hierarchical molybdenum disulfide (MoS2) nanoflower is synthesized via a facile one-pot hydrothermal method, and then was embedd into sulfonated poly ether ether ketone (SPEEK) matrix to prepare composite PEM. The three-dimensional hierarchical architectures of MoS2 nanoflower can not only avoid the aggregation of MoS2 nanosheets but also provide abundant surface area and active sites, which are of benefit to fully take advantage of the intrinsic water absorption and methanol diffusion resistance ability of MoS2 nanosheets. The formed hydrogen bond network with water passway contributes to the improvement in proton conduction of composite membrane. As a consequence, composite membrane with 1 wt% MoS2 nanoflower loading content achieves optimized proton conductivity (0.123 S cm−1, 80 °C) and methanol permeability (21.5 × 10–7 cm2 s−1, 70 °C), which is 59.7% higher and 79.1% lower than that of SPEEK control membrane. Owing to increased proton conductivity and decreased methanol permeability, the maximum power density of the SPEEK/MoS2-1 composite membrane is 82.7 mW cm−2 at 70 °C, which is nearly 64.7% higher than that of pure SPEEK membrane (only 50.2 mW cm−2). Furthermore, the durability test confirms that the SPEEK/MoS2 composite membrane still possesses satisfactory stability even after continuous operation at 70 °C for 100 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liu C, Wang X, Xu JM, Wang CM, Chen H, Liu WH, Chen ZY, Du XM, Wang S, Wang Z (2019) PEMs with high proton conductivity and excellent methanol resistance based on sulfonated poly (aryl ether ketone sulfone) containing comb-shaped structures for dmfcs applications. J Hydrog Energy 45:945–957

    Google Scholar 

  2. Rambabu G, Bhat SD (2018) Amino acid functionalized graphene oxide based nanocomposite membrane electrolytes for direct methanol fuel cells. J Membr Sci 551:1–11

    CAS  Google Scholar 

  3. Wu ZM, Sun GQ, Jin W, Hou HG, Wang SL, Xin Q (2008) Nafion® and nano-size TiO2-SO42 solid superacid composite membrane for direct methanol fuel cell. J Membr Sci 313:336–343

    CAS  Google Scholar 

  4. Zhang Y, Wang H, Liu B, Shi J, Zhang J, Shi H (2019) An Ultra-high ion selectivity hybrid proton exchange membrane incorporated by zwitterion-decorated graphene oxide for vanadium redox flow battery. J Mater Chem A 7:12669–12680

    CAS  Google Scholar 

  5. Simari C, Enotiadis A, Lo Vecchio C, Baglio V, Coppola L, Nicotera I (2020) Advances in hybrid composite membranes engineering for high-performance direct methanol fuel cells by alignment of 2D nanostructures and a dual-layer approach. J Membr Sci 599:117858. https://doi.org/10.1016/j.memsci.2020.117858

    Article  CAS  Google Scholar 

  6. Prapainainar P, Pattanapisutkun N, Prapainainar C, Kongkachuichay P (2019) Incorporating graphene oxide to improve the performance of nafion-mordenite composite membranes for a direct methanol fuel cell. J Hydrog Energy 44:362–378

    CAS  Google Scholar 

  7. Wu ZY, Zhang SJ, Li H, Qi ZG, Xu YX, Tang YY, Gong CL (2015) Linear sulfonated polyimides containing polyhedral oligomeric silsesquioxane (POSS) in main chain for proton exchange membranes. J Power Sources 290:42–52

    CAS  Google Scholar 

  8. Imran MA, He G, Wu X, Yan X, Li T, Khan A (2019) Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells. J Appl Polym Sci 136:47892. https://doi.org/10.1002/app.47892

    Article  CAS  Google Scholar 

  9. Ali A, Hourieh M, Hossein B, Elham T, Mehran J (2018) Novel nanocomposite membrane based on Fe3O4@TDI@TiO2–SO3H: hydration, mechanical and DMFC study. New J Chem 42:16855–16862

    Google Scholar 

  10. Wang F, Wang G, Zhang JC, Li BQ, Zhang J, Deng J, Chen JW, Wang RL (2017) Novel sulfonated poly(ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications. J Electroanal Chem 797:107–112

    CAS  Google Scholar 

  11. Zhao CJ, Li XF, Lin HD, Shao K, Na H (2008) Sulfonated poly(arylene ether ketone)s prepared by direct copolymerization as proton exchange membranes: synthesis and comparative investigation on transport properties. J Appl Polym Sci 108(1):671–680

    CAS  Google Scholar 

  12. Lei LF, Zhu XY, Xu JF, Qian HD, Zou ZQ, Yang H (2017) Highly stable ionic-covalent cross-linked sulfonated poly (ether ether ketone) for direct methanol fuel cells. J Power Sources 350:41–48

    CAS  Google Scholar 

  13. Liu C, Wu ZY, Xu YX, Zhang SJ, Gong CL, Tang YY, Sun DW, Wei H, Shen CH (2018) Facile one-step fabrication of sulfonated polyhedral oligomeric silsesquioxane cross-linked poly(ether ether ketone) for proton exchange membranes. Polym Chem 9:3624–3632

    CAS  Google Scholar 

  14. Li ZH, Dai WJ, Yu LH, Liu L, Xi JY, Qiu XP, Chen LQ (2014) Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl Mater Interfaces 6:18885–18893

    CAS  Google Scholar 

  15. Bagheri A, Javanbakht M, Hosseinabadi P, Beydaghi H, Shabanikia A (2018) Preparation and characterization of SPEEK/SPVDF-co-HFP/LaCrO3 nanocomposite blend membranes for direct methanol fuel cells. Polymer 138:275–287

    CAS  Google Scholar 

  16. Che Q, Yue J (2016) Polymerized imidazolium ionic liquids crosslinking sulfonated poly (ether ether ketone) (SPEEK) for high-temperature proton exchange membrane. RSC Adv 6:111729–111738

    CAS  Google Scholar 

  17. Dong CC, Hao ZM, Wang Q, Zhu BS, Cong CB, Meng XY, Zhou Q (2017) Facile synthesis of metal oxide nanofibers and construction of continuous proton-conducting pathways in SPEEK composite membranes. J Hydrog Energy 42:25388–25400

    CAS  Google Scholar 

  18. Gosalawit R, Chirachanchai S, Shishatskiy S, Nunes SP (2008) Sulfonated montmoril-lonite/sulfonated poly (ether ether ketone) (SMMT/SPEEK) nanocomposite membranefor direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346

    CAS  Google Scholar 

  19. Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    CAS  Google Scholar 

  20. Zhao Y, Yang H, Wu H, Jiang ZY (2014) Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres. J Membr Sci 469:418–427

    CAS  Google Scholar 

  21. He GW, Li ZY, Li YF, Wu H, Yang XL, Jinag ZY (2014) Zwitterionic microcapsules as water reservoirs and proton carriers within a nafion membrane to confer high proton conductivity under low humidity. ACS Appl Mater Interfaces 6:5362–5366

    CAS  Google Scholar 

  22. Zhang G, Liu HJ, Qu JH, Li JH (2016) B two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9:1190–1209

    CAS  Google Scholar 

  23. Feng K, Tang BB, Wu PY (2013) Selective Growth of MoS2 for Proton Exchange Membranes with Extremely High Selectivity. ACS Appl Mater Interfaces 5:13042–13049

    CAS  Google Scholar 

  24. Divya K, Saraswathi M, Rana D, Alwarappan S, Nagendran A (2018) Custom-made sulfonated poly (ether sulfone) nanocomposite proton exchange membranes using exfoliated molybdenum disulfide nanosheets for DMFC applications. Polymer 147:48–55

    CAS  Google Scholar 

  25. Zhou KQ, Jiang SH, Bao CN, Song L, Wang BB, Tang G, Hu Y, Tang G, Hu Y, Gui Z (2012) Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703

    CAS  Google Scholar 

  26. Pu Y, Zhu S, Wang PH, Yang P, Xuan P, Zhang YP, Zhang HP (2018) Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium re dox flow battery application. Appl Surf Sci 448:186–202

    CAS  Google Scholar 

  27. Divya K, Rana D, Alwarappan S, Sarasathi M, Nagendran A (2019) Investigating the usefulness of chitosan based proton exchange membranes tailored with exfoliated molybdenum disulfide nanosheets for clean energy applications. Carbohydr Polym 208:504–512

    CAS  Google Scholar 

  28. Fei CW, Cui LX, Du HW, Gu LN, Xu GS, Yuan YP (2019) A surface carbonization strategy towards MoS2 microspheres with enhanced electrochemical hydrogen evolution activity. New J Chem 43:9583–9588

    CAS  Google Scholar 

  29. Wu CL, Zhao GY, Gong S, Zhang NQ, Sun KN (2019) A PVP incorporated MoS2 as a Mg ion host with enhanced capacity and durability. J Mater Chem A 7:4426–4430

    CAS  Google Scholar 

  30. Zhou WJ, Zhou K, Hou DM, Liu XJ, Li GQ, Sang YH, Liu H, Li LG, Chen SW (2014) Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 6(23):21534–21540

    CAS  Google Scholar 

  31. Zhao YY, Kuai L, Liu YG, Wang PP, Arandiyan H, Cao SC, Zhang J, Li FY, Wang Q, Geng BY, Sun HY (2015) Well-constructed single-layer molybdenum disulfide nanorose cross-linked by three dimensional-reduced graphene oxide network for superior water splitting and lithium storage property. Sci Rep 5:8722. https://doi.org/10.1038/srep08722

    Article  CAS  Google Scholar 

  32. Khan M, Yousaf AB, Chen MM, Wei CS, Wu XB, Huang ND, Qi ZM, Li LB (2016) Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9:837–848

    CAS  Google Scholar 

  33. Liu GL, Tsen W, Jang S, Hu FQ, Zhong F, Liu H, Wang GJ, Wen S, Zheng GW, Gong CL (2019) Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)-poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells. J Membr Sci 591:117321. https://doi.org/10.1016/j.memsci.2019.117321

    Article  CAS  Google Scholar 

  34. He SJ, Dai WX, Yang W, Liu SX, Bian XM, Zhang C, Lin J (2019) Nanocomposite proton exchange membranes based on phosphotungstic acid immobilized by polydopamine-coated halloysite nanotubes. Polym Test 73:242–249

    CAS  Google Scholar 

  35. Zhang HQ, Ma CM, Wang JT, Wang XY, Bai HJ, Liu JD (2014) Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotube. J Hydrog Energy 39:974–986

    CAS  Google Scholar 

  36. Wei YC, Li XB, Hu QX, Ni CJ, Liu BJ, Zhang MY, Zhang HX, Hu W (2016) Sulfonated nanocrystal cellulose/sulfophenylated poly(ether ether ketone ketone) composites for proton exchange membranes. RSC Adv 6:65072–65080

    CAS  Google Scholar 

  37. Wu XM, He GH, Li XC, Yan XM, Yu L, Benziger J (2014) Improving the proton conductivity of sulfonated poly (ether ether ketone) membranes by incorporating a crystalline nanoassembly of trimesic acid and melamine. J Power Sources 246:482–490

    CAS  Google Scholar 

  38. Salarizadeh P, Javanbakhht M, Pourmahdian S, Hazer M, Hooshyari K, Askari MB (2019) Novel proton exchange membranes based on proton conductive sulfonated PAMPS/PSSA-TiO2 hybrid nanoparticles and sulfonated poly (ether ether ketone) for PEMFC. J Hydrog Energy 44:3099–3114

    CAS  Google Scholar 

  39. Li Y, Wu H, Yin YH, Cao L, He XY, Shi BB, Li JZ, Xu MZ, Jiang ZY (2018) Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity. J Membr Sci 568:1–9

    CAS  Google Scholar 

  40. Bano S, Negi YS, Illathvalappil R, Kurungot S, Ramya K (2019) Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electron Acta 293:260–272

    CAS  Google Scholar 

  41. Xue BX, Zhou SY, Yao J, Wang F, Zheng JF, Li SH, Zhang SB (2020) Novel proton exchange membranes based on sulfonated-phosphonated poly (p-phenylene-co-aryl ether ketone) terpolymers with microblock structures for passive direct methanol fuel cells. J Membr Sci 594:117466. https://doi.org/10.1016/j.memsci.2019.117466

  42. Vijayakumar V, Son TY, Kim HJ, Nam SY (2019) A facile approach to fabricate poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications. J Membr Sci 591:117314. https://doi.org/10.1016/j.memsci.2019.117314

    Article  CAS  Google Scholar 

  43. Deluca NW, Elabd YA (2006) Polymer electrolyte membranes for the direct methanol fuel cell: a review. J Polym Sci Poly Phys 44:2201–2225

    CAS  Google Scholar 

  44. Yang Q, Lin CX, Liu FH, Li L, Zhang QG, Zhu AM, Liu QL (2018) Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells. J Membr Sci 552:367–376

    CAS  Google Scholar 

  45. Salarizadeh P, Javanbakht M, Pourmahdian S (2017) Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites. RSC Adv 7:8303–8313

    CAS  Google Scholar 

  46. Ou Y, Wen-Chin T, Shin-Cheng J, Fu-Sheng C, Wang J, Liu H, Wen S, Gong CL (2018) Novel composite polymer electrolyte membrane using solid superacidic sulfated zirconia—functionalized carbon nanotube modified chitosan. Electrochim Acta 264:251–259

    CAS  Google Scholar 

  47. Zhao Q, Wei YC, Ni CJ, Wang LL, Liu BJ, Liu J, Zhang MY, Men YF, Sun ZY, Xie HM, Hu W, Lu YF (2019) Effect of aminated nanocrystal cellulose on proton conductivity and dimensional stability of proton exchange membranes. Appl Surf Sci 466:691–702

    CAS  Google Scholar 

  48. Gurau B, Smotkin ES (2002) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112:339–352

    CAS  Google Scholar 

  49. Auimviriyavat J, Changkhamchom S, Sirivat A (2011) Development of Poly(Ether Ether Ketone) (PEEK) with Inorganic Filler for Direct Methanol Fuel Cells (DMFCS). Ind Eng Chem Res 50:12527–12533

    CAS  Google Scholar 

  50. Shukla A, Dhanasekaran P, Sasikala S, Nagaraiu N, Bhat SD, Pillai VK (2020) Covalent grafting of polystyrene sulfonic acid on graphene oxide nanoplatelets to form a composite membrane electrolyte with sulfonated poly(ether ether ketone) for direct methanol fuel cells. J Membr Sci 595:117484. https://doi.org/10.1016/j.memsci.2019.117484

    Article  CAS  Google Scholar 

  51. Prapainainar P, Pattanapisutkun N, Prapainainar C, Kongkachuichay P (2019) Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell. J Hydrog Energy 44(1):362–378

    CAS  Google Scholar 

  52. Nagaraju N, Pichaimuthu K, Sarmah S, Dhanasekaran P, Shukla A, Unni SM, Bhat SD (2018) A copper-trimesic acid metal–organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells. New J Chem 42:16758–16765

    Google Scholar 

  53. Neelakandan S, Ramachandran R, Fang ML, Wang L (2019) Improving the performance of sulfonated polymer membrane by using sulfonic acid functionalized heterometallic metal-organic framework for DMFC applications. J Hydrog Energy 44:1673–1684

    Google Scholar 

  54. Al-Batty S, Dawson C, Shanmukham SP, Roberts EPL, Holmes SM (2016) Improvement of direct methanol fuel cell performance using a novel mordenite barrier layer. J Mater Chem A 4(28):10850–10857

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the supports given by Science and Technology Research Project of Education Department of Hubei Province (No.Q20202704), Xiaogan Natural Science Program (No.XGKJ2019010056) and the National Natural Science Foundation of China (No. 31701310). This work was also supported by the Fundamental Research Funds for the Central Universities (No. 2662020GXPY013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Zhong or Wenjuan Niu.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Xie, P., Hou, R. et al. Improved performance of sulfonated poly ether ether ketone/three-dimensional hierarchical molybdenum disulfide nanoflower composite proton exchange membrane for fuel cells. J Mater Sci 56, 6531–6548 (2021). https://doi.org/10.1007/s10853-020-05716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05716-x

Navigation