Skip to main content
Log in

Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

FeOCl-MoS2 was synthesized via calcination, which possessed excellent adsorption performance for methyl orange (MO). The characterization results showed that the FeOCl-MoS2 was formed between MoS2 and FeOCl phases, while a remarkable improvement in specific surface area and porosity was obtained in comparison with pure FeOCl and MoS2. The adsorption experiment results showed that the adsorption capacity of MO dye at 25 °C could reach 1615.11 mg/g. In addition, the pseudo-second-order kinetic model (R2 > 0.99) has a good applicability to describe the adsorption of MO onto FeOCl-MoS2. Langmuir isotherm model (R2 > 0.99) can describe the adsorption process well, proving that the adsorption is surface-controlled monolayer adsorption. Thermodynamic analyses showed the adsorption is an exothermic process and has spontaneity in nature. The adsorption of MO onto FeOCl-MoS2 is attributed to electrostatic interaction. In particular, the adsorption capacity could still reach 82.1% of the initial adsorption capacity by alkali washing after five cycles. Hence, this study reveals that FeOCl-MoS2 could be a high-efficient adsorbent for dyes removal from wastewaters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Dang T-D, Banerjee AN, Tran Q-T, Roy S (2016) Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation. J Phys Chem Solids 98:50–58

    Article  CAS  Google Scholar 

  2. Kafshgari LA, Ghorbani M, Azizi A (2017) Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl Surf Sci 419:70–83

    Article  CAS  Google Scholar 

  3. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4:1359–1372

    Article  CAS  Google Scholar 

  4. Jing C, Xu B, Lin H, Luo B, Chen S (2012) Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem Eng J 185–186:91–99

    Google Scholar 

  5. Li J, Hu M, Pei H, Ma X, Yan F, Dlamini DS, Cui Z, He B, Li J (2020) Matsuyama H, Improved water permeability and structural stability in a polysulfone-grafted graphene oxide composite membrane used for dye separation. J Membrane Sci 595:117547

    Article  CAS  Google Scholar 

  6. Wang T, Wu H, Zhao S, Zhang W, Tahir M, Wang Z, Wang J (2020) Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation. Chem Eng J 384:123347

    Article  CAS  Google Scholar 

  7. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  Google Scholar 

  8. Kaur K, Jindal R (2019) Comparative study on the behaviour of Chitosan-Gelatin based Hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes. Carbohyd Polym 207:398–410

    Article  CAS  Google Scholar 

  9. Li X, Jin X, Zhao N, Angelidaki I, Zhang Y (2017) Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresource Technol 228:322–329

    Article  CAS  Google Scholar 

  10. Liang S, Zhang B, Shi J, Wang T, Zhang L, Wang Z, Chen C (2018) Improved decolorization of dye wastewater in an electrochemical system powered by microbial fuel cells and intensified by micro-electrolysis. Bioelectrochemistry 124:112–118

    Article  CAS  Google Scholar 

  11. Qiang T, Song Y, Zhao J, Li J (2019) Controlled incorporation homogeneous Ti-doped SBA-15 for improving methylene blue adsorption capacity. J Alloy Compd 770:792–802

    Article  CAS  Google Scholar 

  12. Zhu J, Wang Y, Liu J, Zhang Y (2014) Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind Eng Chem Res 53:13711–13717

    Article  CAS  Google Scholar 

  13. Lee HS, Min S-W, Chang Y-G, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700

    Article  CAS  Google Scholar 

  14. Na L, Kim P, Ji HK, Ye JH, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902

    Article  Google Scholar 

  15. Shi Y, Wan Y, Liu R, Tu B, Zhao D (2007) Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J Am Chem Soc 129:9522–9531

    Article  CAS  Google Scholar 

  16. Skrabalak SE, Suslick KS (2005) Porous MoS2 synthesized by ultrasonic spray pyrolysis. J Am Chem Soc 127:9990–9991

    Article  CAS  Google Scholar 

  17. Yang C, Cheng J, Chen Y, Hu Y (2017) Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B. J Colloid Interf Sci 504:39–47

    Article  CAS  Google Scholar 

  18. Komarneni M, Sand A, Burghaus U (2009) Adsorption of thiophene on inorganic MoS2 fullerene-like nanoparticles. Catal Lett 129:66–70

    Article  CAS  Google Scholar 

  19. Chao Y, Zhu W, Wu X, Hou F, Xun S, Wu P, Ji H, Xu H, Li H (2014) Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem Eng J 243:60–67

    Article  CAS  Google Scholar 

  20. Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D (2019) Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments 170:107591

    Article  CAS  Google Scholar 

  21. Qiao X, Hu F, Tian F, Hou D, Li D (2016) Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. Rsc Adv 6:11631–11636

    Article  CAS  Google Scholar 

  22. Qiao X, Hu F, Hou D, Li D (2016) PEG assisted hydrothermal synthesis of hierarchical MoS2 microspheres with excellent adsorption behavior. Mater Lett 169:241–245

    Article  CAS  Google Scholar 

  23. Wang X, Ding J, Yao S, Wu X, Feng Q, Wang Z, Geng B (2014) High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A 2:15958–15963

    Article  CAS  Google Scholar 

  24. Kanamaru F, Shimada M, Koizumi M, Takano M, Takada T (1973) Mössbauer effect of FeOCl-pyridine complex. J Solid State Chem 7:297–299

    Article  CAS  Google Scholar 

  25. Jarrige I, Cai Y, Shieh S, Ishii H, Hiraoka N, Karna S, Li W-H (2010) Charge transfer in FeOCl intercalation compounds and its pressure dependence: an X-ray spectroscopic study. Phys Rev B 82:165121

    Article  Google Scholar 

  26. Sun M, Zucker I, Davenport DM, Zhou X, Qu J, Elimelech M (2018) Reactive, self-cleaning ultrafiltration membrane functionalized with iron oxychloride nanocatalysts. Environ Sci Technol 52:8674–8683

    Article  CAS  Google Scholar 

  27. Yang X, Xu X, Xu X, Xu J, Wang H, Semiat R, Han Y (2016) Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst. Catal Today 276:85–96

    Article  CAS  Google Scholar 

  28. Ai L, Zeng Y, Jiang J (2014) Hierarchical porous BiOI architectures: facile microwave nonaqueous synthesis, characterization and application in the removal of Congo red from aqueous solution. Chem Eng J 235:331–339

    Article  CAS  Google Scholar 

  29. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  CAS  Google Scholar 

  30. Qu S, Li C, Sun X, Wang J, Luo H, Wang S, Ta J, Li D (2019) Enhancement of peroxymonosulfate activation and utilization efficiency via iron oxychloride nanosheets in visible light. Sep Purif Technol 224:132–141

    Article  CAS  Google Scholar 

  31. De Faria D, Venâncio Silva S, De Oliveira M (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  33. Sharma YC, Upadhyay SN (2009) Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energ Fuel 23:2983–2988

    Article  CAS  Google Scholar 

  34. Du X, Wang C, Liu J, Zhao X, Zhong J, Li Y, Li J, Wang P (2017) Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J Colloid Interf Sci 506:437–441

    Article  CAS  Google Scholar 

  35. Elsherbiny AS, El-Hefnawy ME, Gemeay AH (2017) Linker impact on the adsorption capacity of polyaspartate/montmorillonite composites towards methyl blue removal. Chem Eng J 315:142–151

    Article  CAS  Google Scholar 

  36. Tahir MA, Bhatti HN, Iqbal M (2016) Solar red and brittle blue direct dyes adsorption onto eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng 4:2431–2439

    Article  Google Scholar 

  37. Zhang B, Dong Z, Sun D, Wu T, Li Y (2017) Enhanced adsorption capacity of dyes by surfactant-modified layered double hydroxides from aqueous solution. J Ind Eng Chem 49:208–218

    Article  CAS  Google Scholar 

  38. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    Article  CAS  Google Scholar 

  39. Lan C, Bo B (2013) Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres. Ind Eng Chem Res 52:15568–15577

    Article  Google Scholar 

  40. Kumara AJ, Singha RP, Fua D, Namasivayamb C (2017) Comparison of physical-and chemical-activated Jatropha curcas husk carbon as an adsorbent for the adsorption of reactive red 2 from aqueous solution. Desalin Water Treat 95:308–318

    Article  Google Scholar 

  41. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158

    Article  CAS  Google Scholar 

  42. Ahmad S, Khalid N, Daud M (2002) Adsorption studies of lead on lateritic minerals from aqueous media. Sep Sci Technol 37:343–362

    Article  CAS  Google Scholar 

  43. Darwish A, RashadAL-Aoh MHA (2019) Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments 160:563–571

    Article  CAS  Google Scholar 

  44. Ahmad A, Razali MH, Mamat M, Mehamod FSB, Amin KAM (2017) Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere 168:474–482

    Article  CAS  Google Scholar 

  45. Chen Y, Jing C, Zhang X, Jiang D, Liu X, Dong B, Feng L, Li S, Zhang Y (2019) Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye. J Colloid Interf Sci 548:100–109

    Article  CAS  Google Scholar 

  46. Zaghouane-Boudiaf H, Boutahala M, Arab L (2012) Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chem Eng J 187:142–149

    Article  CAS  Google Scholar 

  47. Morimoto K, Tamura K, Iyi N, Ye J, Yamada H (2011) Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. J Phys Chem Solids 72:1037–1045

    Article  CAS  Google Scholar 

  48. Mandal S, Tichit D, Lerner DA, Marcotte N (2009) Azoic dye hosted in layered double hydroxide: physicochemical characterization of the intercalated materials. Langmuir 25:10980–10986

    Article  CAS  Google Scholar 

  49. Chen H, Zhao J, Wu J, Dai G (2011) Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J Hazard Mater 192:246–254

    CAS  Google Scholar 

  50. Lafi R, Hafiane A (2016) Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J Taiwan Inst Chem E 58:424–433

    Article  CAS  Google Scholar 

  51. Kyzas GZ, Lazaridis NK, Mitropoulos AC (2012) Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem Eng J 189:148–159

    Article  Google Scholar 

  52. Haque E, Jun JW, Jhung SH (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185:507–511

    Article  CAS  Google Scholar 

  53. Deng Y, Zhao Y, Wang P, Yao Z, Zhang X, Sun W (2017) Coordination polymers with 1, 3-bis (1-imidazolyl)-5-(imidazol-1-ylmethyl) benzene and biphenyl-4,4′-dicarboxylate ligands: selective adsorption of gas and dye molecules. Micropor Mesopor Mat 241:192–201

    Article  CAS  Google Scholar 

  54. Tella AC, Olawale MD, Neuburger M, Obaleye JA (2017) Synthesis and crystal structure of Cd-based metal-organic framework for removal of methyl-orange from aqueous solution. J Solid State Chem 255:157–166

    Article  CAS  Google Scholar 

  55. Auta M, Hameed BH (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361

    Article  CAS  Google Scholar 

  56. Mahmoodi NM, Hayati B, Arami M, Mazaheri F (2010) Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: equilibrium and kinetics. J Chem Eng Data 55:4660–4668

    Article  CAS  Google Scholar 

  57. Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater. J Hazard Mater 79:117–131

    Article  CAS  Google Scholar 

  58. Soha S, Naz C, Zeinab MS (2018) Synthesis of MoS2/MnFe2O4 nanocomposite with highly efficient catalytic performance in visible light photo-Fenton-like process. J Photochem Photobiol, A 367:420–428

    Article  Google Scholar 

  59. Zhang B, Chen M, Li D, Xu H, Xia D (2019) Quantitative investigation into the enhancing utilization efficiency of H2O2 catalyzed by FeOCl under visible light. J Photochem Photobiol, A 386:112072

    Article  Google Scholar 

Download references

Acknowledgements

The research was partially supported by China Petroleum and Chemical Industry Federation Scientific Research Developing Projects (318024-5 and 319005-7) and Changzhou University Scientific Research Starting Foundation (18020311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linchao Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, W., Mao, L. et al. Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. J Mater Sci 56, 6704–6718 (2021). https://doi.org/10.1007/s10853-020-05715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05715-y

Navigation