Skip to main content
Log in

Mineralized supramolecular hydrogel as thermo-responsive smart window

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Everlasting pursuit of the high energy efficiency as well as meeting fluctuant temperature causes various lighting requirements over the day, which is driving the demand for creating a multifunctional smart window (SW) system. Here, an upper critical solution temperature (UCST)- and/or lower critical solution temperature (LCST)-type SW system (denoted as SWU, SWL and SWU+L, respectively) was fabricated through a simple bio-inspired physical cross-link process between amorphous CaCO3 (ACC) and poly(acrylic acid) (PAA). Series of mineralized hydrogel-based chromic layers were first in situ formed by sealing the composite of ACC in PAA matrix into polyethylene terephthalate (PET) “sandwich structure” to fabricate the SW system. As expected, the SWU system exhibited a typical UCST transition process, bringing about a luminous transmittance (Tlum) of 40.70% at 25 °C and a Tlum of 74.76% at 45 °C. The high scattering of the initial state as well as large optical contrast (ΔTlum \(=\) 34.06%) of the SWU system guarantees residential privacy and energy savings. Also, a thermochromic SWL system with a relatively high luminous transmittance (Tlum) of 47.81% at 25 °C and an acceptable solar modulation property (ΔTlum \(=\) 16.06%) was constructed. A conceptual SWU+L system was fabricated, that is, a sharp UCST transition followed by a LCST process. This reversible two-stage optical switch process subsequently occurs by continuously increasing temperature, endowing this SW system highly suitable for SW or logic gate. The SW system with multi-thermo-responsiveness brings more flexibility in building facade design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lee E, Kim D, Yoon J (2016) Stepwise activation of switchable glazing by compositional gradient of copolymers. ACS Appl Mater Interfaces 8:26359–26364. https://doi.org/10.1021/acsami.6b10091

    Article  CAS  Google Scholar 

  2. Chen F, Ren Y, Guo J, Yan F (2017) Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows. Chem Commun 53:1595–1598. https://doi.org/10.1039/c6cc08924k

    Article  CAS  Google Scholar 

  3. Sala RL, Gonçalves RH, Camargo ER, Leite ER (2018) Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Sol Energy Mater Sol Cells 186:266–272. https://doi.org/10.1016/j.solmat.2018.06.037

    Article  CAS  Google Scholar 

  4. Atak G, Bayrak Pehlivan İ, Montero J, Primetzhofer D, Granqvist CG, Niklasson GA (2020) Electrochromism of nitrogen-doped tungsten oxide thin films. Mater Today Proc (just accepted). https://doi.org/10.1016/j.matpr.2020.01.332

    Article  Google Scholar 

  5. Hosseinzadeh Khaligh H, Liew K, Han Y, Abukhdeir NM, Goldthorpe IA (2015) Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol Energy Mater Sol Cells 132:337–341. https://doi.org/10.1016/j.solmat.2014.09.006

    Article  CAS  Google Scholar 

  6. Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, Fujishima A (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2:29–31. https://doi.org/10.1038/nmat796

    Article  CAS  Google Scholar 

  7. Zhang S, Cao S, Zhang T, Fisher A, Lee JY (2018) Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ Sci 11:2884–2892. https://doi.org/10.1039/C8EE01718B

    Article  CAS  Google Scholar 

  8. Lu X, Sun Y, Chen Z, Gao Y (2017) A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulation. Sol Energy Mater Sol Cells 159:102–111. https://doi.org/10.1016/j.solmat.2016.08.020

    Article  CAS  Google Scholar 

  9. Singh AK, Kiruthika S, Mondal I, Kulkarni GU (2017) Fabrication of solar and electrically adjustable large area smart windows for indoor light and heat modulation. J Mater Chem C 5:5917–5922. https://doi.org/10.1039/C7TC01489A

    Article  CAS  Google Scholar 

  10. Kiruthika S, Kulkarni GU (2017) Energy efficient hydrogel based smart windows with low cost transparent conducting electrodes. Sol Energy Mater Sol Cells 163:231–236. https://doi.org/10.1016/j.solmat.2017.01.039

    Article  CAS  Google Scholar 

  11. Vazquez-Pufleau M, Winkler PM (2020) Development of an ultraviolet constant angle mie scattering detector towards the determination of aerosol growth kinetics in the transition and free molecular regime. Aerosol Sci Technol. https://doi.org/10.1080/02786826.2020.1736504

    Article  Google Scholar 

  12. Wei G, Yang D, Zhang T, Yue X, Qiu F (2020) Thermal-responsive PNIPAm-acrylic/Ag NRs hybrid hydrogel with atmospheric window full-wavelength thermal management for smart windows. Sol Energy Mater Sol Cells 206:110336. https://doi.org/10.1016/j.solmat.2019.110336

    Article  CAS  Google Scholar 

  13. Zhou Y, Cai Y, Hu X, Long Y (2014) Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications. J Mater Chem A 2:13550–13555. https://doi.org/10.1039/C4TA02287D

    Article  CAS  Google Scholar 

  14. Wang M, Xing X, Perepichka IF, Shi Y, Zhou D, Wu P, Meng H (2019) Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv Energy Mater 9:1900433. https://doi.org/10.1002/aenm.201900433

    Article  CAS  Google Scholar 

  15. Owusu-Nkwantabisah S, Gillmor J, Switalski S, Mis MR, Bennett G, Moody R, Antalek B, Gutierrez R, Slater G (2017) Synergistic thermoresponsive optical properties of a composite self-healing hydrogel. Macromolecules 50:3671–3679. https://doi.org/10.1021/acs.macromol.7b00355

    Article  CAS  Google Scholar 

  16. Wang M, Gao Y, Cao C, Chen K, Wen Y, Fang D, Li L, Guo X (2014) Binary solvent colloids of thermosensitive Poly(N-isopropylacrylamide) microgel for smart windows. Ind Eng Chem Res 53:18462–18472. https://doi.org/10.1021/ie502828b

    Article  CAS  Google Scholar 

  17. Zhou Y, Layani M, Wang S, Hu P, Ke Y, Magdassi S, Long Y (2018) Fully printed flexible smart hybrid hydrogels. Adv Funct Mater 28:1800113. https://doi.org/10.1002/adfm.201705365

    Article  CAS  Google Scholar 

  18. Patenaude M, Hoare T (2012) Injectable, degradable thermoresponsive Poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett 1:409–413. https://doi.org/10.1021/mz200121k

    Article  CAS  Google Scholar 

  19. Gardiner DJ, Morris SM, Coles HJ (2009) High-efficiency multistable switchable glazing using smectic a liquid crystals. Sol Energy Mater Sol Cells 93:301–306. https://doi.org/10.1016/j.solmat.2008.10.023

    Article  CAS  Google Scholar 

  20. Yang YS, Zhou Y, Yin Chiang FB, Long Y (2016) Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application. RSC Adv 6:61449–61453. https://doi.org/10.1039/C6RA12454B

    Article  CAS  Google Scholar 

  21. La TG, Li X, Kumar A, Fu Y, Yang S, Chung HJ (2017) Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels. ACS Appl Mater Interfaces 9:33100–33106. https://doi.org/10.1021/acsami.7b08907

    Article  CAS  Google Scholar 

  22. Wang S, Xu Z, Wang T, Xiao T, Hu XY, Shen YZ, Wang L (2018) Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-03827-3

    Article  CAS  Google Scholar 

  23. Gao Y, Wang S, Luo H, Dai L, Cao C, Liu Y, Chen Z, Kanehira M (2012) Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ Sci 5:6104–6110. https://doi.org/10.1039/c2ee02803d

    Article  CAS  Google Scholar 

  24. Wang Y, Zhao F, Wang J, Li L, Zhang K, Shi Y, Gao Y, Guo X (2019) Tungsten-doped VO2/starch derivative hybrid nanothermochromic hydrogel for smart window. Nanomaterials 9:970. https://doi.org/10.3390/nano9070970

    Article  CAS  Google Scholar 

  25. Wang Y, Fang Z, Wang J, Khan AR, Shi Y, Chen Z, Zhang K, Li L, Gao Y, Guo X (2018) VO2@SiO2/Poly(N-isopropylacrylamide) hybrid nanothermochromic microgels for smart window. Ind Eng Chem Res 57:12801–12808. https://doi.org/10.1021/acs.iecr.8b02692

    Article  CAS  Google Scholar 

  26. Wang Y, Wang Y, Wang J, Zhao F, Xu Z, Yuan Z, Niu X, Li L, Bai S, Shi Y, Guo X (2019) Mineralized supramolecular hydrogels bearing tunable thermo-responsiveness. Macromol Rapid Commun 40:1900516. https://doi.org/10.1002/marc.201970054

    Article  CAS  Google Scholar 

  27. Sakota K, Tabata D, Sekiya H (2015) Macromolecular crowding modifies the impact of specific hofmeister ions on the coil-globule transition of PNIPAM. J Phys Chem B 119:10334–10340. https://doi.org/10.1021/acs.jpcb.5b01255

    Article  CAS  Google Scholar 

  28. Zhang XZ, Yang YY, Chung TS, Ma KX (2001) Preparation and characterization of fast response macroporous Poly(N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099. https://doi.org/10.1021/la010105v

    Article  CAS  Google Scholar 

  29. Chen Z, Gao Y, Kang L, Cao C, Chen S, Luo H (2014) Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J Mater Chem A 2:11874–11884. https://doi.org/10.1039/c3ta14612j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial support from the NSFC Grants (51761135128 and 51773061), Key Scientific and Technological Project of Xinjiang Bingtuan (2018AB025), and the Fundamental Research Funds for the Central Universities (22221818010 and 222201917013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuhong Guo or Yanfeng Gao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3445 kb)

Supplementary file2 (MP4 1797 kb)

Supplementary file3 (MP4 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bai, S., Wei, L. et al. Mineralized supramolecular hydrogel as thermo-responsive smart window. J Mater Sci 56, 6955–6965 (2021). https://doi.org/10.1007/s10853-020-05710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05710-3