Deformation twinning-induced single-variant ω-plates in metastable β-Ti alloys containing athermal ω-precipitates


The ω-phase in metastable β-titanium (Ti) alloys attracts great research interests owing to the metastability and the involved microstructural complexity upon straining, while the fundamental understanding on its formation mechanism is still insufficient. In this study, deformation-induced ω-plates have been systematically investigated using Ti-10 wt% Cr metastable β-Ti alloy containing athermal ω-precipitates. It is found that single-variant ω-plates form either along {332}β twin interfaces or in the twin interiors, which closely depends on twin morphologies. For the acicular β-twin, the ω-plate appears in the twin interiors accompanied by high density of parallel straight dislocations, while for the lenticular twin, the ω-plate attaches to the twin interface without the surrounding dense parallel straight dislocations. These unique formation characteristics result from local stress field induced by the twinning itself and the passive transformation of athermal ω-precipitates. It is further revealed that the passive transformation of athermal ω-precipitates dominates the formation of ω-plates inside the acicular twins, while it is the locally preferential twin thickening that promotes the ω-plates to form along the lenticular twin interfaces. These findings provide new insight into deformation-induced ω-phase transformation and the intricate deformation microstructures in metastable β-Ti alloys.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Data availability

All data generated or analyzed during this study are included in this article.


  1. 1

    Sikka SK, Vohra YK, Chidambaram R (1982) Omega phase in materials. Prog Mater Sci 27:245–310

    CAS  Article  Google Scholar 

  2. 2

    Hickman BS (1969) The formation of omega phase in titanium and zirconium alloys: a review. J Mater Sci 4:554–563.

    CAS  Article  Google Scholar 

  3. 3

    Banerjee S, Mukhopadhyay P (2010) Phase transformations: examples from titanium and zirconium alloys. Elsevier, Oxford

    Google Scholar 

  4. 4

    Silcock JM (1958) An X-ray examination of the to phase in TiV, TiMo and TiCr alloys. Acta Metall 6:481–493

    CAS  Article  Google Scholar 

  5. 5

    Nag S, Devaraj A, Srinivasan R, Williams REA, Gupta N, Viswanathan GB et al (2011) Novel mixed-mode phase transition involving a composition-dependent displacive component. Phys Rev Lett 106:245701

    CAS  Article  Google Scholar 

  6. 6

    Devaraj A, Nag S, Srinivasan R, Williams REA, Banerjee S, Banerjee R et al (2012) Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys. Acta Mater 60:596–609

    CAS  Article  Google Scholar 

  7. 7

    Choudhuri D, Zheng Y, Alam T, Shi R, Hendrickson M, Banerjee S et al (2017) Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Mater 130:215–228

    CAS  Article  Google Scholar 

  8. 8

    Li Q, Niinomi M, Hieda J, Nakai M, Cho K (2013) Deformation-induced ω phase in modified Ti–29Nb–13Ta–4.6Zr alloy by Cr addition. Acta Biomater 9:8027–8035

    CAS  Article  Google Scholar 

  9. 9

    Liu H, Niinomi M, Nakai M, Cho K, Fujii H (2017) Deformation-induced ω-phase transformation in a β-type titanium alloy during tensile deformation. Scripta Mater 130:27–31

    CAS  Article  Google Scholar 

  10. 10

    Liu H, Niinomi M, Nakai M, Cho K (2016) Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti–9Cr–0.2O. Acta Mater 106:162–170

    CAS  Article  Google Scholar 

  11. 11

    Kuan TS, Ahrens RR, Sass SL (1975) The Stress-induced omega phase transformation in Ti-V alloys. Metall Trans A 6:1767–1774

    Article  Google Scholar 

  12. 12

    Zhang J, Tasan CC, Lai MJ, Dippel AC, Raabe D (2017) Complexion-mediated martensitic phase transformation in Titanium. Nat Commun 8:14210

    CAS  Article  Google Scholar 

  13. 13

    Bönisch M, Panigrahi A, Stoica M, Calin M, Ahrens E, Zehetbauer M et al (2017) Giant thermal expansion and α-precipitation pathways in Ti-alloys. Nat Commun 8:1429

    Article  CAS  Google Scholar 

  14. 14

    Okamoto NL, Kasatani S, Luckabauer M, Tane M, Ichitsubo T (2020) Effects of solute oxygen on kinetics of diffusionless isothermal ω transformation in β-titanium alloys. Scripta Mater 188:88–91

    CAS  Article  Google Scholar 

  15. 15

    Antonov S, Kloenne Z, Gao Y, Wang D, Feng Q, Wang Y et al (2020) Novel deformation twinning system in a cold rolled high-strength metastable- β Ti-5Al-5V-5Mo-3Cr-0.5 Fe alloy. Materialia 9:100614

    CAS  Article  Google Scholar 

  16. 16

    Xiao W, Dargusch MS, Kent D, Zhao X, Ma C (2020) Activation of homogeneous precursors for formation of uniform and refined α precipitates in a high-strength β-Ti alloy. Materialia 9:100557

    CAS  Article  Google Scholar 

  17. 17

    Koul M, Breedis J (1970) Omega phase embrittlement in aged Ti-V. Metall Mater Trans B 1:1451–1452

    CAS  Article  Google Scholar 

  18. 18

    Williams J, Hickman B, Marcus H (1971) The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 2:1913–1919

    CAS  Google Scholar 

  19. 19

    Gysler A, Lütjering G, Gerold V (1974) Deformation behavior of age-hardened Ti-Mo alloys. Acta Metall 22:901–909

    CAS  Article  Google Scholar 

  20. 20

    Chen W, Cao S, Kou WJ, Zhang JY, Wang Y, Zha Y et al (2019) Origin of the ductile-to-brittle transition of metastable beta-titanium alloys: self-hardening of omega-precipitates. Acta Mater 170:187–204

    CAS  Article  Google Scholar 

  21. 21

    Wang W, Zhang X, Mei W, Sun J (2020) Role of omega phase evolution in plastic deformation of twinning-induced plasticity β Ti–12V–2Fe–1Al alloy. Mater Des 186:108282

    CAS  Article  Google Scholar 

  22. 22

    Sun F, Zhang JY, Vermaut P, Choudhuri D, Alam T, Mantri SA et al (2017) Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging. Mater Res Lett 5:547–553

    CAS  Article  Google Scholar 

  23. 23

    Gao J, Knowles AJ, Guan D, Rainforth WM (2019) ω phase strengthened 1.2GPa metastable β titanium alloy with high ductility. Scripta Mater 162:77–81

    CAS  Article  Google Scholar 

  24. 24

    Sun F, Zhang JY, Marteleur M, Gloriant T, Vermaut P, Laillé D et al (2013) Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater 61:6406–6417

    CAS  Article  Google Scholar 

  25. 25

    Liu H, Niinomi M, Nakai M, Hieda J, Cho K (2014) Changeable Young’s modulus with large elongation-to-failure in beta-type titanium alloys for spinal fixation applications. Scripta Mater 82:29–32

    CAS  Article  Google Scholar 

  26. 26

    Yang Y, Wu SQ, Li GP, Li YL, Lu YF, Yang K et al (2010) Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining. Acta Mater 58:2778–2787

    CAS  Article  Google Scholar 

  27. 27

    Ahmed M, Wexler D, Casillas G, Ivasishin OM, Pereloma EV (2015) The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy. Acta Mater 84:124–135

    CAS  Article  Google Scholar 

  28. 28

    Castany P, Yang Y, Bertrand E, Gloriant T (2016) Reversion of a parent {130}< 310 >α'' martensitic twinning system at the origin of {332}< 113 >β twins observed in metastable β titanium alloys. Phys Rev Lett 117:245501

    CAS  Article  Google Scholar 

  29. 29

    Yang Y, Castany P, Hao YL, Gloriant T (2020) Plastic deformation via hierarchical nano-sized martensitic twinning in the metastable β Ti-24Nb-4Zr-8Sn alloy. Acta Mater

  30. 30

    Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scripta Mater 55:477–480

    CAS  Article  Google Scholar 

  31. 31

    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243:244–249

    Article  Google Scholar 

  32. 32

    Huang LF, Grabowski B, Zhang J, Lai MJ, Tasan CC, SandloBes S et al (2016) From electronic structure to phase diagrams: a bottom-up approach to understand the stability of titanium-transition metal alloys. Acta Materialia 113:311–319

    CAS  Article  Google Scholar 

  33. 33

    Hanada S, Izumi O (1980) Deformation of metastable betaTi-15Mo-5Zr alloy single crystals. Metall Trans A 11:1447–1452

    Article  Google Scholar 

  34. 34

    Hanada S, Ozeki M, Izumi O (1985) Deformation characteristics in Β phase Ti-Nb alloys. Metall Trans A 16:789–795

    Article  Google Scholar 

  35. 35

    Hanada S, Izumi O (1986) Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys. Metall Transactions a-phys Metall Mater Sci 17:1409–1420

    Article  Google Scholar 

  36. 36

    Kawabata T, Kawasaki S, Izumi O (1998) Mechanical properties of TiNbTa single crystals at cryogenic temperatures. Acta Mater 46:2705–2715

    CAS  Article  Google Scholar 

  37. 37

    Hanada S, Izumi O (1987) Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys. Metall Mater Trans A 18:265–271

    Article  Google Scholar 

  38. 38

    Tobe H, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Origin of 332 twinning in metastable β-Ti alloys. Acta Mater 64:345–355

    CAS  Article  Google Scholar 

  39. 39

    Lai MJ, Tasan CC, Raabe D (2016) On the mechanism of 332 twinning in metastable β titanium alloys. Acta Mater 111:173–186

    CAS  Article  Google Scholar 

  40. 40

    Chen B, Sun W (2018) Transitional structure of {332}β twin boundary in a deformed metastable β-type Ti-Nb-based alloy, revealed by atomic resolution electron microscopy. Scripta Mater 150:115–119

    CAS  Article  Google Scholar 

  41. 41

    Cho K, Morioka R, Harjo S, Kawasaki T, Yasuda HY (2020) Study on formation mechanism of {332}<113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α” martensite phase. Scripta Mater 177:106–111

    CAS  Article  Google Scholar 

  42. 42

    Sukedai E, Shimoda M, Nishizawa H, Nako Y (2011) Nucleation behaviour of beta to omega phase transformations in beta-Type Ti-Mo Alloys. Mater Transactions 52:324–330

    CAS  Article  Google Scholar 

  43. 43

    Yang Y, Castany P, Bertrand E, Cornen M, Lin JX, Gloriant T (2018) Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α” martensitic transformation. Acta Mater 149:97–107

    CAS  Article  Google Scholar 

  44. 44

    Xing H, Sun J (2008) Mechanical twinning and omega transition by < 111 > {112} shear in a metastable beta titanium alloy. Appl Phys Lett 93:031908

    Article  CAS  Google Scholar 

  45. 45

    Lai M, Tasan CC, Zhang J, Grabowski B, Huang L, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63

    CAS  Article  Google Scholar 

  46. 46

    Furuhara T, Kishimoto K, Maki T (1994) Transmission electron microscopy of {332} 113 deformation twin in Ti–15V–3Cr–3Sn–3Al Alloy. Mater Transactions, JIM 35:843–850

    CAS  Article  Google Scholar 

  47. 47

    Qi L, Chen C, Duan H, He S, Hao Y, Ye H et al (2019) Reversible displacive transformation with continuous transition interface in a metastable beta titanium alloy. Acta Mater 174:217–226

    CAS  Article  Google Scholar 

  48. 48

    Min X, Chen X, Emura S, Tsuchiya K (2013) Mechanism of twinning-induced plasticity in β-type Ti–15Mo alloy. Scripta Mater 69:393–396

    CAS  Article  Google Scholar 

  49. 49

    Lai MJ, Li T, Raabe D (2018) ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Mater 151:67–77

    CAS  Article  Google Scholar 

  50. 50

    Zhao G-H, Xu X, Dye D, Rivera-Díaz-del-Castillo PEJ (2020) Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater 183:155–164

    Article  CAS  Google Scholar 

  51. 51

    Bertrand E, Castany P, Péron I, Gloriant T (2011) Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scripta Mater 64:1110–1113

    CAS  Article  Google Scholar 

  52. 52

    Zhang J, Fu Y, Wu Y, Qian B, Chen Z, Inoue A et al (2020) Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization. Mater Res Lett 8:247–253

    CAS  Article  Google Scholar 

  53. 53

    Chen W, Zhang JY, Cao S, Pan Y, Huang MD, Hu QM et al (2016) Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: Precipitates shearing vs precipitates disordering. Acta Mater 117:68–80

    CAS  Article  Google Scholar 

  54. 54

    Hoagland RG, Kurtz RJ, Henager CH Jr (2004) Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater 50:775–779

    CAS  Article  Google Scholar 

  55. 55

    Guo Y, Schwiedrzik J, Michler J, Maeder X (2016) On the nucleation and growth of 112¯2 twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution. Acta Mater 120:292–301

    CAS  Article  Google Scholar 

  56. 56

    Arul Kumar M, Hilairet N, McCabe RJ, Yu T, Wang Y, Beyerlein IJ et al (2020) Role of twinning on the omega-phase transformation and stability in zirconium. Acta Mater 185:211–217

    CAS  Article  Google Scholar 

  57. 57

    Cai S, Schaffer JE, Ren Y (2015) Deformation of a Ti-Nb alloy containing α"-martensite and omega phases. Appl Phys Lett 106:131907

    Article  CAS  Google Scholar 

  58. 58

    Tane M, Okuda Y, Todaka Y, Ogi H, Nagakubo A (2013) Elastic properties of single-crystalline ω phase in titanium. Acta Mater 61:7543–7554

    CAS  Article  Google Scholar 

  59. 59

    Nejezchlebová J, Janovská M, Seiner H, Sedlák P, Landa M, Šmilauerová J et al (2016) The effect of athermal and isothermal ω phase particles on elasticity of β-Ti single crystals. Acta Mater 110:185–191

    Article  CAS  Google Scholar 

  60. 60

    Min XH, Tsuzaki K, Emura S, Sawaguchi T, Ii S, Tsuchiya K (2013) {332}<113> Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy. Mater Sci Eng A 579:164–169

    CAS  Article  Google Scholar 

  61. 61

    Min X, Emura S, Chen X, Zhou X, Tsuzaki K, Tsuchiya K (2016) Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity β titanium alloy. Mater Sci Eng A 659:1–11

    CAS  Article  Google Scholar 

  62. 62

    Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157

    Article  Google Scholar 

  63. 63

    Kumar MA, Clausen B, Capolungo L, Mccabe RJ, Tomé CN (2018) Deformation twinning and grain partitioning in a hexagonal close-packed magnesium alloy. Nat Commun 9:476–478

    Article  CAS  Google Scholar 

  64. 64

    Siska F, Stratil L, Cizek J, Ghaderi A, Barnett M (2017) Numerical analysis of twin thickening process in magnesium alloys. Acta Mater 124:9–16

    CAS  Article  Google Scholar 

  65. 65

    Arul Kumar M, Beyerlein IJ, Tomé CN (2016) Effect of local stress fields on twin characteristics in HCP metals. Acta Mater 116:143–154

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Grant No. 51871176), Natural Science Basic Research Plan in Shaanxi Province of China (2018JM5098) and the 111 Project 2.0 of China (PB2018008).

Author information




Wei Chen designed the project and wrote the paper. K.E. Li and G.X. Yu carried out the experiments. J.Q. Ren performed the EBSD characterization. Y. Zha analyzed the data. JS provided valuable comments and suggestions for this paper. All authors contributed to discussion of the results.

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Sophie Primig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, K., Yu, G. et al. Deformation twinning-induced single-variant ω-plates in metastable β-Ti alloys containing athermal ω-precipitates. J Mater Sci 56, 7710–7726 (2021).

Download citation