Skip to main content

Advertisement

Log in

Electron irradiation effects on Ag nanoparticles

  • Metals & Corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ electron irradiation effects on shape and size of plate-like Ag nanoparticles (NPs) embedded in silicon nitride self-standing \(\approx\) 70-nm-thick membranes are investigated as a function of the beam energy (120, 160 and 200 keV) and fluence using a conventional transmission electron microscope. The irradiations are performed at room temperature and cause a rapid spheroidization of the initially observed plate-like structures. Preferential sputtering of N and Si atoms exposes the resulting Ag NPs to the vacuum. At this point the sputtering of the Ag atoms causes a size decrease at distinct rates depending on the NP size and on the beam energy. This is modeled considering the influence of a size-dependent surface binding of the Ag atoms on the sputtering process. The results are compared with literature models for size-dependent cohesive energy. Our experiments discloses a new way to modify sizes and shapes and test for the size-dependent properties of thermally unstable nanoscopic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aikens CM (2011) Electronic structure of ligand-passivated gold and silver nanoclusters. J Phys Chem Lett 2(2):99–104

    Article  CAS  Google Scholar 

  2. Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37(9):1847–1859

    Article  Google Scholar 

  3. Ruffino F, Grimaldi M, Giannazzo F, Roccaforte F, Raineri V (2006a) Nanoscale voltage tunable tunnel rectifier by gold nanostructures embedded in si o 2. Appl Phys Lett 89(26):263108

    Article  Google Scholar 

  4. Ruffino F, Grimaldi M, Giannazzo F, Roccaforte F, Raineri V (2006b) Size-dependent schottky barrier height in self-assembled gold nanoparticles. Appl Phys Lett 89(24):243113

    Article  Google Scholar 

  5. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications, Washington

    Google Scholar 

  6. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  7. Pawlow P (1909) The dependency of the melting point on the surface energy of a solid body. Z phys Chem 65(5):545–548

    CAS  Google Scholar 

  8. Mei Q, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Progress Mater Sci 52(8):1175–1262. https://doi.org/10.1016/J.PMATSCI.2007.01.001

    Article  CAS  Google Scholar 

  9. Guenther G, Guillon O (2014) Models of size-dependent nanoparticle melting tested on gold. J Mater Sci 49(23):7915–7932. https://doi.org/10.1007/s10853-014-8544-1

    Article  CAS  Google Scholar 

  10. Xue YQ, Zhao MZ, Lai WP (2013) Size-dependent phase transition temperatures of dispersed systems. Phys B: Condens Matter 408:134–139

    Article  CAS  Google Scholar 

  11. Nanda K (2009) Size-dependent melting of nanoparticles: hundred years of thermodynamic model. Pramana 72(4):617–628

    Article  CAS  Google Scholar 

  12. Nanda KK (2012) Liquid-drop model for the surface energy of nanoparticles. Phys Lett A 376(19):1647–1649

    Article  CAS  Google Scholar 

  13. Luce FP, Kremer F, Reboh S, Fabrim ZE, Sanchez DF, Zawislak FC, Fichtner PFP (2011) Aging effects on the nucleation of pb nanoparticles in silica. J Appl Phys 109(1):014320

    Article  Google Scholar 

  14. Guinea F, Rose JH, Smith JR, Ferrante J (1984) Scaling relations in the equation of state, thermal expansion, and melting of metals. Appl Phys Lett 44(1):53–55

    Article  CAS  Google Scholar 

  15. Kaptay G, Csicsovszki G, Yaghmaee MS (2003) An absolute scale for the cohesion energy of pure metals. Mater Sci Forum, Trans Tech Publ 414:235–240

    Article  Google Scholar 

  16. Nanda K, Sahu S, Behera S (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66(1):013208

    Article  Google Scholar 

  17. Qi W, Wang M (2002) Size effect on the cohesive energy of nanoparticle. J Mater Sci Lett 21(22):1743–1745. https://doi.org/10.1023/A:1020904317133

    Article  CAS  Google Scholar 

  18. Qu YD, Liang XL, Kong XQ, Zhang WJ (2017) Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles. Phys Metals Metallogr 118(6):528–534. https://doi.org/10.1134/S0031918X17060102

    Article  CAS  Google Scholar 

  19. Yu X, Zhan Z (2014) The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties. Nanoscale Res Lett 9(1):1–6. https://doi.org/10.1186/1556-276X-9-516

    Article  Google Scholar 

  20. Shandiz MA (2008) Effective coordination number model for the size dependency of physical properties of nanocrystals. J Phys: Condensed Matter 20(32):325237

    Google Scholar 

  21. Chmielewski A, Nelayah J, Amara H, Creuze J, Alloyeau D, Wang G, Ricolleau C (2018) Direct measurement of the surface energy of bimetallic nanoparticles: evidence of vegard’s rulelike dependence. Phys Rev Lett 120(2):025901

    Article  CAS  Google Scholar 

  22. Asoro MA, Kovar D, Ferreira PJ (2013) In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano 7(9):7844–7852. https://doi.org/10.1021/nn402771j

    Article  CAS  Google Scholar 

  23. Nanda K, Maisels A, Kruis F, Fissan H, Stappert S (2003) Higher surface energy of free nanoparticles. Phys Rev Lett 91(10):106102

    Article  CAS  Google Scholar 

  24. Lu H, Jiang Q (2004) Comment on “higher surface energy of free nanoparticles”. Phys Rev Lett 92(17):179601

    Article  CAS  Google Scholar 

  25. Li K, Zhang FS (2010) A novel approach for preparing silver nanoparticles under electron beam irradiation. J Nanop Res 12(4):1423–1428

    Article  CAS  Google Scholar 

  26. Gu H, Li G, Liu C, Yuan F, Han F, Zhang L, Wu S (2017) Considerable knock-on displacement of metal atoms under a low energy electron beam. Sci Rep 7(1):1–10

    Article  Google Scholar 

  27. Luce FP, Oliviero E, Azevedo GdM, Baptista DL, Zawislak F, Fichtner P (2016) In-situ transmission electron microscopy growth of nanoparticles under extreme conditions. J Appl Phys 119(3):035901

    Article  Google Scholar 

  28. Timm MM, Fabrim ZE, Marin C, Baptista DL, Fichtner PF (2017) Electron irradiation effects on the nucleation and growth of Au nanoparticles in silicon nitride membranes. J Appl Phys 122(16):165301. https://doi.org/10.1063/1.4998734

    Article  CAS  Google Scholar 

  29. Egerton RF, McLeod R, Wang F, Malac M (2010) Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8):991–997. https://doi.org/10.1016/j.ultramic.2009.11.003

    Article  CAS  Google Scholar 

  30. Ziegler JF, Ziegler MD, Biersack JP (2010) Srim-the stopping and range of ions in matter. Nucl Instrum Method Phys Res Sect B: Beam Interact Mater Atoms 268(11–12):1818–1823

    Article  CAS  Google Scholar 

  31. Egerton R, Li P, Malac M (2004) Radiation damage in the tem and sem. Micron 35(6):399–409

    Article  CAS  Google Scholar 

  32. Liu LC, Risbud SH (1994) Real-time hot-stage high-voltage transmission electron microscopy precipitation of CdS nanocrystals in glasses: Experiment and theoretical analysis. J Appl Phys 76(8):4576–4580. https://doi.org/10.1063/1.357291

    Article  CAS  Google Scholar 

  33. Kohl H, Reimer L (2008) Transmission electron microscopy: physics of image formation. Springer, NY

    Google Scholar 

  34. Nanda KK (2005) Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl Phys Lett 87(2):43–46. https://doi.org/10.1063/1.1994958

    Article  Google Scholar 

  35. Bradley C, Zaluzec N (1989) Atomic sputtering in the analytical electron microscope. Ultramicroscopy 28(1–4):335–338

    Article  Google Scholar 

  36. Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics, vol 8. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Center for Microscopy and Microanalysis, Ion Implantation Laboratory and Laboratory of Nanometric Conformation - UFRGS. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and by Ministério da Ciência, Tecnologia e Inovações - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant no. 309375/2016-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo F. P. Fichtner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to funding sources or authorship.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konrad, B., Fabrim, Z.E., Timm, M.M. et al. Electron irradiation effects on Ag nanoparticles. J Mater Sci 56, 8202–8208 (2021). https://doi.org/10.1007/s10853-020-05705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05705-0