Skip to main content
Log in

Microstructural analysis and surface studies on Ag-Ge alloy coatings prepared by electrodeposition technique

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among the main characteristics of silver and its alloys, tarnish resistance as well as surface brightness is essential. Alloying these materials with germanium has been shown to have considerable potential in providing tarnish protection. However, studies regarding the electrodeposited silver-germanium (Ag–Ge) alloy coatings are limited. The main objective of this study is to investigate the electrodeposition process of Ag-Ge alloy coatings with different Ge contents. In this regard, co-electrodeposition of Ag and Ge as an alloy coating was performed on pure copper substrates from a cyanide-based electrolyte. The effect of Ge incorporation on alloy composition, surface morphology, topography, texture, crystalline structure and cathodic efficiency of the obtained electrodeposits was investigated. Also corrosion properties of coatings were perused by polarization curves. Evaluation of the coatings was performed using different characterization techniques including XPS, SEM, FESEM, EDS, XRD, AFM, ICP, GIXRD, XRF, FTIR and electrochemical analysis. Results indicated that the optimum content of Ge in the coating was found to be 6 wt% regarding dense and uniform microstructure along with the best corrosion resistance. In addition, the X-ray diffraction patterns exhibited a shift in lattice parameter of Ag that was attributed to the Ag-Ge biphasic alloy formation. Moreover, the surface studies revealed a morphological transformation from nodular to cauliflower-like by increasing the Ge content of coating. The obtained polarization curves represent a remarkable decrease in Ag-6Ge alloy corrosion current density, about 20 times compared to Ag-0.5Ge and about 6 to pure silver. Discrepancies in characteristics between the Ag-Ge and pure Ag coatings were addressed and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8.
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Jiang L, Wang W, Wu D, Zhan J, Wang Q, Wu Z, Jin R (2007) Preparation of silver quantum dots embedded water-soluble silica/PAAc hybrid nanoparticles and their bactericidal activity. Mater Chem Phys 104:230–234

    Article  CAS  Google Scholar 

  2. Liao Y, Wang Y, Feng X, Wang W, Xu F, Zhang L (2010) Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Mater Chem Phys 121:534–540

    Article  CAS  Google Scholar 

  3. Khollari MAR, Azar MK, Esmaeili M, Tanhaei M, Dolati A (2020) others Elevated-temperature behaviour of LiNi0. 5Co0. 2Mn0. 3O2 cathode modified with rGO-SiO2 composite coating. J Alloys Compd 843:154924. https://doi.org/10.1016/j.jallcom.2020.154924

    Article  CAS  Google Scholar 

  4. Hosseini M, Momeni MM (2010) Silver nanoparticles dispersed in polyaniline matrixes coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. J Mater Sci 45:3304–3310. https://doi.org/10.1007/s10853-010-4347-1

    Article  CAS  Google Scholar 

  5. Ghani S, Sharif R, Shahzadi S, Zafar N, Anwar AW, Ashraf A, Zaidi AA, Kamboh AH, Bashir S (2015) Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells. J Mater Sci 50:1469–1477. https://doi.org/10.1007/s10853-014-8708-z

    Article  CAS  Google Scholar 

  6. Momeni MM, Ghayeb Y, Gheibee S (2017) Electrodeposition of silver on CrTiO 2 nanotubes and study of their structural, morphological, optical and photocatalytic properties. J Mater Sci Mater Electron 28:2607–2614

    Article  CAS  Google Scholar 

  7. Sultana I, Idrees M, Rafique MY, Ilyas S, Hussain SQ, Kahn AA, Razaq A (2018) Electrodeposition of silver (Ag) nanoparticles on MnO 2 nanorods for fabrication of highly conductive and flexible paper electrodes for energy storage application. J Mater Sci Mater Electron 29:20588–20594

    Article  CAS  Google Scholar 

  8. Liu XM, Wu SL, Chu PK, Chung CY, Zheng J, Li SL (2006) Effects of coating process on the characteristics of Ag–SnO2 contact materials. Mater Chem Phys 98:477–480

    Article  CAS  Google Scholar 

  9. Cusma A, Sebastiani M, De Felicis D, Basso A, Bemporad E (2015) Study on the correlation between microstructure corrosion and wear resistance of Ag-Cu-Ge Alloys. Coatings 5:78–94. https://doi.org/10.3390/coatings5010078

    Article  CAS  Google Scholar 

  10. Johns PG (2019) Process for making finished or semi-finished articles of silver alloy. US Patent 10,323,310. https://patents.google.com/patent/US10323310B2/en

  11. Youdelis WV, Youdelis William V (1978) Silver-copper-germanium alloys having high oxidation resistant melts. US Patent 4,124,380. https://patents.google.com/patent/US4124380A/en

  12. Johns PG, Argentium International Ltd (2010) Silver ternary alloy. US Patent Application 12/766,312. https://patents.google.com/patent/US20100239454A1/en

  13. Johns P, Harrison C, Middlesex Silver Co Ltd (2007) Enhancing silver tarnish-resistance. US Patent Application 10/551,476. https://patents.google.com/patent/US20070039665A1/en

  14. Ke J, Bartlett PN, Cook D, Easun TL, George MW, Levason W, Reid G, Smith D, Su W, Zhang W (2012) Electrodeposition of germanium from supercritical fluids. Phys Chem Chem Phys 14:1517–1528. https://doi.org/10.1039/c1cp22555c

    Article  CAS  Google Scholar 

  15. Subbaraman PR, Gupta J (1956) J Sci Ind Res 15:306

  16. Pandey V, Ramachandrarao P (1987) A metastable phase in electrodeposited Ag-Ge alloys. Surf Coat Technol 30:401–404

    Article  CAS  Google Scholar 

  17. Ghaffari S, Aliofkhazraei M, Darband GB, Zakeri A, Ahmadi E (2019) Review of superoleophobic surfaces: evaluation, fabrication methods, and industrial applications. Surf Interfaces 17:100340. https://doi.org/10.1016/j.surfin.2019.100340

    Article  CAS  Google Scholar 

  18. Bahmani E, Zakeri A, Aghdam ASR (2020) A fast and efficient approach to fabricate tarnish-resistant nanocrystalline Ag-Ge thin films by direct current electrodeposition. Mater Lett 274:127991. https://doi.org/10.1016/j.matlet.2020.127991

    Article  CAS  Google Scholar 

  19. Lin S-C, Chen S-Y, Chen Y-T, Cheng S-Y (2008) Electrochemical fabrication and magnetic properties of highly ordered silver–nickel core-shell nanowires. J Alloys Compd 449:232–236

    Article  CAS  Google Scholar 

  20. Jeon Y, Choe S, Kim HC, Kim MJ, Kim JJ (2019) Electrodeposition of Cu-Ag films in ammonia-based electrolyte. J Alloys Compd 775:639–646. https://doi.org/10.1016/j.jallcom.2018.10.023

    Article  CAS  Google Scholar 

  21. Roy MK, Nambissan PMG, Verma HC (2002) Structural, thermal stability and defect studies of Fe–Ag alloy prepared by electrodeposition technique. J Alloys Compd 345:183–188. https://doi.org/10.1016/S0925-8388(02)00480-2

    Article  CAS  Google Scholar 

  22. Dadvand N, Dadvand M (2014) Pulse Electrodeposition of Nanostructured silver-tungsten-cobalt oxide composite from a non-cyanide plating bath. J Electrochem Soc 161:D730–D735. https://doi.org/10.1149/2.0371414jes

    Article  CAS  Google Scholar 

  23. Han C, Liu Q, Ivey DG (2009) Electrochemical composite deposition of Sn–Ag–Cu alloys. Mater Sci Eng B 164:172–179. https://doi.org/10.1016/j.mseb.2009.09.012

    Article  CAS  Google Scholar 

  24. Li Z, Song H, Yang Z, Jin Y, Jiao Z, Zhang Y, Gao Y, Yu Z, Li W, Gong M, Sun X (2009) Synthesis of silver nanowires via electroplating technology and its surface enhanced Raman scattering effect. Appl Surf Sci 255:8571–8574. https://doi.org/10.1016/j.apsusc.2009.06.022

    Article  CAS  Google Scholar 

  25. Lu Y, Liang Q, Li W (2013) Fabrication of copper/modal fabric composites through electroless plating process for electromagnetic interference shielding. Mater Chem Phys 140:553–558

    Article  CAS  Google Scholar 

  26. Liu Z-C, He Q-G, Xiao P-F, Liang B, Tan J-X, He N-Y, Lu Z-H (2003) Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of Ag. Mater Chem Phys 82:301–305

    Article  CAS  Google Scholar 

  27. Chua ST, Siow KS (2016) Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 C. J Alloys Compd 687:486–498

    Article  CAS  Google Scholar 

  28. Wu CP, Yi DQ, Li J, Xiao LR, Wang B, Zheng F (2008) Investigation on microstructure and performance of Ag/ZnO contact material. J Alloys Compd 457:565–570

    Article  CAS  Google Scholar 

  29. Chen D, Kang Z, Hirahara H, Li W (2019) Quasi layer by layer spray deposition of high-quality Ag coatings with excellent micro mechanical properties. Appl Surf Sci 481:1213–1219. https://doi.org/10.1016/j.apsusc.2019.03.254

    Article  CAS  Google Scholar 

  30. Khollari MAR, Ghorbani M, Afshar A (2019) Fabrication and characterization of TiO2 deposited black electroless Ni-P solar absorber. Appl Surf Sci 496:143632. https://doi.org/10.1016/j.apsusc.2019.143632

    Article  CAS  Google Scholar 

  31. Muzychenko DA, Schouteden K, Panov VI, Van Haesendonck C (2012) Formation of Co/Ge intermixing layers after Co deposition on Ge (111) \(2\times1\) surfaces. Nanotechnology. 23:435605. https://doi.org/10.1088/0957-4484/23/43/435605

    Article  CAS  Google Scholar 

  32. Nakamura Y, Masada A, Cho S-P, Tanaka N, Ichikawa M (2007) Epitaxial growth of ultrahigh density Ge 1–x Sn x quantum dots on Si (111) substrates by codeposition of Ge and Sn on ultrathin SiO 2 films. J Appl Phys 102:124302. https://doi.org/10.1063/1.2822271

    Article  CAS  Google Scholar 

  33. Nath P, Chopra KL (1979) Electrical resistivity and thermoelectric power of copper-germanium films. Thin Solid Films 58:339–343

    Article  CAS  Google Scholar 

  34. Goeller PT, Boyanov BI, Sayers DE, Nemanich RJ (1997) Structure and stability of cobalt-silicon-germanium thin films, Nucl instruments methods. Phys Res Sect B Beam Interact with Mater Atoms 133:84–89

    Article  CAS  Google Scholar 

  35. Zhao F, Xu Y, Mibus M, Zangari G (2017) The Induced electrochemical codeposition of Cu-Ge alloy films. J Electrochem Soc 164:D354–D361. https://doi.org/10.1149/2.1241706jes

    Article  CAS  Google Scholar 

  36. Ye X, Celis JP, De Bonte M, Roos JR (1994) Ductility and crystallographic structure of zinc foils electrodeposited from acid zinc sulfate solutions. J Electrochem Soc 141:2698–2708

    Article  CAS  Google Scholar 

  37. Offoiach R, Lekka M, Lanzutti A, De Leitenburg C, Fedrizzi L (2017) Production and microstructural characterization of Ni matrix composite electrodeposits containing either micro-or nano-particles of Al. Surf Coat Technol 309:242–248

    Article  CAS  Google Scholar 

  38. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  39. Wojciechowski J (2017) Nickel coatings electrodeposited from watts type baths containing quaternary ammonium sulphate salts. Int J Electrochem Sci 12:3350–3360. https://doi.org/10.20964/2017.04.70

    Article  CAS  Google Scholar 

  40. Cotell CM, Sprague JA, Smidt FA (1994) ASM Handbook: Surface Engineering. ASM international, Cleveland

    Book  Google Scholar 

  41. Carrano RV, Mondillo RA, Stern Leach Co (2000) Tarnish-resistant hardenable fine silver alloys. US Patent 6,139,652. https://patents.google.com/patent/US6139652A/en

  42. Brenner A (2013) Electrodeposition of alloys: principles and practice. Elsevier. https://books.google.com/books?hl=en&lr=&id=asA3BQAAQBAJ&oi=fnd&pg=PP1&dq=Brenner+Abner,.+Electrodeposition+of+alloys.&ots=DyfcA2DYe&sig=biIpMJk9WxIxHnDTrkqvmuU6sFc#v=onepage&q=Brenner%20Abner%2C.%20Electrodeposition%20of%20alloys.&f=false

  43. Brenner A, Senderoff S (1964) Electrodeposition of alloys. New York. https://www.sciencedirect.com/book/9781483198071/electrodeposition-of-alloys

  44. Natarajan SR (1985) Current efficiency and electrochemical equivalent in an electrolytic process. Bull Electrochem 1:215–216

    CAS  Google Scholar 

  45. Lippincott ER, Van Valkenburg A, Weir CE, Bunting EN (1958) Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J Res Natl Bur Stand 61:61–70

    Article  CAS  Google Scholar 

  46. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294

    Article  CAS  Google Scholar 

  47. Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364. https://doi.org/10.3390/en11020364

    Article  Google Scholar 

  48. Kumaraguru S, Pavulraj R, Vijayakumar J, Mohan S (2017) Electrodeposition of cobalt/silver multilayers from deep eutectic solvent and their giant magnetoresistance. J Alloys Compd 693:1143–1149

    Article  CAS  Google Scholar 

  49. Łukaszewski M, Klimek K, Czerwiński A (2009) Microscopic, spectroscopic and electrochemical characterization of the surface of Pd–Ag alloys. J Electroanal Chem 637:13–20

    Article  Google Scholar 

  50. Tai C-C, Su F-Y, Sun I-W (2005) Electrodeposition of palladium–silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid. Electrochimica acta 50:5504–5509

    Article  CAS  Google Scholar 

  51. Méndez-Albores A, González-Arellano SG, Reyes-Vidal Y, Torres J, Talu S, Cercado B, Trejo G (2017) Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: characterization and antibacterial activity. J Alloys Compd 710:302–311

    Article  Google Scholar 

  52. Dugdale JS (2016) The electrical properties of metals and alloys. Courier Dover Publications, NewYork

    Google Scholar 

  53. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice hall, New Jersey

    Google Scholar 

  54. Lahiri A, Borisenko N, Borodin A, Olschewski M, Endres F (2016) Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid. Phys Chem Chem Phys 18:5630–5637

    Article  CAS  Google Scholar 

  55. Zhang R, Iwasaki T, Taoka N, Takenaka M, Takagi S (2011) Impact of GeOx interfacial layer thickness on Al2O3/Ge MOS interface properties. Microelectron Eng 88:1533–1536

    Article  CAS  Google Scholar 

  56. Nigam A, Kala S (2020) Optical, structural and XPS studies of Ag nanoparticles prepared via Melia azedarach plant extract. In: AIP Conf Proc, 2020: 20116

  57. Panafidin MA, Bukhtiyarov AV, Prosvirin IP, Chetyrin IA, Bukhtiyarov VI (2018) Model bimetallic Pd–Ag/HOPG catalysts: an XPS and STM study. Kinet Catal 59:776–785

    Article  CAS  Google Scholar 

  58. Abu-Safe HH, Al-Esseili R, El-Nasser H, Sarollahi M, Refaei M, Zamani-Alavijeh M, Naseem H, Ware ME (2020) Au–Ag–Al Nano-Alloy Thin films as an advanced material for photonic applications: XPS analysis, Linear and nonlinear optical properties under CW regime. Cryst Res Technol. https://doi.org/10.1002/crat.201900228

    Article  Google Scholar 

  59. Chevalier P-Y (1988) Critical assessment of thermodynamic data for the Ag-Ge system. Thermochimica acta 130:25–32

    Article  CAS  Google Scholar 

  60. Akhmetova AM, Dinsdale AT, Khvan AV, Cheverikin VV, Kondratyev AV, Ivanov DO (2015) Compounds, experimental investigations of the Ag–Cu–Ge system. J Alloys Compd 630:84–93

    Article  CAS  Google Scholar 

  61. Wang J, Liu YJ, Tang CY, Liu LB, Zhou HY, Jin ZP (2011) Thermodynamic description of the Au–Ag–Ge ternary system. Thermochimica acta 512:240–246

    Article  CAS  Google Scholar 

  62. Filipponi A, Giordano VM, Malvestuto M (2002) Lattice expansion and Ge solubility in the Ag1–ϑGeϑ terminal solid solution. Physica Status Solidi 234:496–505

    Article  CAS  Google Scholar 

  63. Briggs TR, McDuffie RO, Willisford LH (2002) Germanium. XXXI. alloys of Germanium: Silver-Germanium. J Phys chem 33:1080–1096

    Article  Google Scholar 

  64. Ren F, Yin L, Wang S, Volinsky AA, Tian B (2013) Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings. Trans Nonferr Met Soc China 23:3822–3828. https://doi.org/10.1016/s1003-6326(13)62935-0

    Article  CAS  Google Scholar 

  65. Nasehnejad M, Shahraki MG, Nabiyouni G (2016) Atomic force microscopy study, kinetic roughening and multifractal analysis of electrodeposited silver films. Appl Surf Sci 389:735–741

    Article  CAS  Google Scholar 

  66. Wang SK, Kita K, Lee CH, Tabata T, Nishimura T, Nagashio K, Toriumi A (2010) Desorption kinetics of GeO from GeO 2/Ge structure. J Appl Phys 108:54104. https://doi.org/10.1063/1.3475990

    Article  Google Scholar 

  67. Jones DA (1992) Principles and prevention of corrosion. Macmillan. https://cds.cern.ch/record/24506710.1007/s10853-020-05601-7

  68. Chen YH, Liu WC, Lin YC, Chung CC, Zeng WJ, Chu WJ, Chung TY, Liu CY (2016) Sulfurization study on the Ag and Ag-Pd reflectors for GaN-based LEDs. J Electron Mater 45:191–196

    Article  CAS  Google Scholar 

  69. Elliott RP, Shunk FA (1980) The Ag- Ge system (Silver-Germanium). Bull Alloy Ph Diagr 1:47–51

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks goes to Mohammad Hossein Yari for his great support and kind help. The authors would also like to thank Tarbiat Modares University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elnaz Bahmani.

Ethics declarations

Conflict of interest

None.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, E., Zakeri, A. & Sabour Rouh Aghdam, A. Microstructural analysis and surface studies on Ag-Ge alloy coatings prepared by electrodeposition technique. J Mater Sci 56, 6427–6447 (2021). https://doi.org/10.1007/s10853-020-05601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05601-7

Navigation