Skip to main content

Advertisement

Log in

Rapid catalytic hydrolysis performance of Mg alloy enhanced by MoS2 auxiliary mass transfer

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mg10Ni-MoS2 composites were synthesized, and the amount of molybdenum disulfide (MoS2) and ball milling time was optimized to obtain rapid initial kinetics with high conversion yield at room temperature in simulated seawater. The microstructures and H2 generation thermodynamics were comprehensively investigated to demonstrate the main influential factors on excellent initial hydrolysis performance. Mg10Ni-5 wt%MoS2-15 min can generate 493.3 mL·g-1 H2 at 298 K with 58% yield in 20 s. The H2 generation capabilities of Mg10Ni-5 wt% MoS2-15 min are 569 mL·g-1 H2 and 67%, which are higher than those of Mg10Ni (495 mL·g-1 H2, 56%) in 2 min. The lowest hydrolysis activation energy (18.74 kJ·mol-1) can be achieved by Mg10Ni-5 wt%MoS2, which means low energy consumption. Mg10Ni with higher specific surface area (4.04 m2⋅g-1) than that of Mg10Ni-5wt.%MoS2-15 min (0.78 m2⋅g-1) presents worse H2 generation performance, indicating that higher specific surface area is the secondary determinant for superior initial hydrolysis kinetics and higher conversion yield compared with the added MoS2. The added MoS2 with specific morphologic structure can provide auxiliary mass transfer paths, which shorten the transfer distance and destroy the continuous colloidal layer. Mg-rich alloys optimized for rapid and efficient H2 production performance are expected to be applied large-scale H2 generators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Prasad D, Patil KN, Chaitra CR, Sandhya N, Bhanushali JT, Gosavi SW, Jadhav AH, Nagaraja BM (2019) Sulfonic acid functionalized PVA/PVDF composite hollow microcapsules: highly phenomenal & recyclable catalysts for sustainable hydrogen production. Appl Surf Sci 488:714–727

    CAS  Google Scholar 

  2. Cao Z, Ouyang L, Wang H, Liu J, Felderhoff M, Zhu M (2017) Reversible hydrogen storage in yttrium aluminum hydride. J Mater Chem A 5:6042–6046

    CAS  Google Scholar 

  3. Wang T, Liu J, Kong L, Yang H, Li C (2020) Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics. Ceramic Int 46:25392–25398

    CAS  Google Scholar 

  4. Tahir M, Siraj M, Tahir B, Umer M, Alias H, Othman N (2020) Au-NPs embedded Z-scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution. Appl Surf Sci 503:144344

    CAS  Google Scholar 

  5. Hou X, Hu R, Yang Y, Feng L (2017) Isothermal activation, thermodynamic and hysteresis of MgH2 hydrides catalytically modified by high-energy ball milling with MWCNTs and TiF3. Int J Hydrogen Energy 42:22953–22964

    CAS  Google Scholar 

  6. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renew Sustain Energy Rev 81:1690–1704

    CAS  Google Scholar 

  7. Zhu Y, Marianov AN, Xu H, Lang CI, Jiang Y (2018) Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production. ACS Appl Mater Interfaces 10:9468–9477

    CAS  Google Scholar 

  8. Lin X, Li Q, Pang Y (2017) Hydrogen generation from photocatalytic hydrolysis of alkali-metal borohydrides. Int J Energy Res 41:1342–1350

    CAS  Google Scholar 

  9. Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK, Keri RS, Jadhav AH, Nagaraja BM (2019) Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst. Appl Surf Sci 489:538–551

    CAS  Google Scholar 

  10. Ma M, Duan R, Ouyang L, Zhu X, Min Z (2016) Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. J Alloy Compd 691:929–935

    Google Scholar 

  11. Lian HY, Liu JL, Li XS, Zhu X, Weber AZ, Zhu AM (2019) Plasma chain catalytic reforming of methanol for on-board hydrogen production. Chem Eng J 369:245–252

    CAS  Google Scholar 

  12. Ocon JD, Tuan TN, Yi Y, Leon RLD, Lee J (2013) Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles. J Power Sources 243:444–450

    CAS  Google Scholar 

  13. Fan MQ, Sun LQ, Xu F (2010) Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation. Energy Convers Manage 51:594–599

    CAS  Google Scholar 

  14. Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd Zn S and ZnO/Pt/CdS Se hybrid nanostructures. Energy Environ Sci 6:3589–3594

    CAS  Google Scholar 

  15. Hou X, Wang Y, Yang Y, Hu R, Yang G, Feng L, Suo G, Ye X, Zhang L, Shi H, Yang L, Chen ZG (2019) Enhanced hydrogen generation behaviors and hydrolysis thermodynamics of as-cast Mg-Ni-Ce magnesium-rich alloys in simulate seawater. Int J Hydrogen Energy 44:24086–24097

    CAS  Google Scholar 

  16. Shi Y, Leng H, Wei L, Chen S, Li Q (2019) The microstructure and electrochemical properties of Mn-doped La-Y-Ni-based metal-hydride electrode materials. Electrochim Acta 296:18–26

    CAS  Google Scholar 

  17. Liu BH, Li ZP, Zhu JK (2009) Sodium borohydride formation when Mg reacts with hydrous sodium borates under hydrogen. J Alloy Compd 476:L16–L20

    CAS  Google Scholar 

  18. Xie X, Chen M, Liu P, Shang J, Liu T (2018) Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg-Ni-V nanocomposite. Chem Eng J 347:145–155

    CAS  Google Scholar 

  19. Xie X, Chen M, Liu P, Shang J, Liu T (2017) High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene. J Power Sources 371:112–118

    CAS  Google Scholar 

  20. Xie X, Ni C, Wang B, Zhang Y, Zhao X, Liu L, Wang B, Du W (2020) Recent advances in hydrogen generation process via hydrolysis of Mg-based materials: A short review. J Alloy Compd 816:152634

    CAS  Google Scholar 

  21. Zou MS, Yang RJ, Guo XY, Huang HT, He JY, Zhang P (2011) The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater. Int J Hydrogen Energy 36:6478–6483

    CAS  Google Scholar 

  22. Yang B, Zou J, Huang T, Mao J, Zeng X, Ding W (2019) Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method. Chem Eng J 371:233–243

    CAS  Google Scholar 

  23. Oh S, Cho T, Kim M, Lim J, Eom K, Kim D, Cho E, Kwon H (2017) Fabrication of Mg-Ni-Sn alloys for fast hydrogen generation in seawater. Int J Hydrogen Energy 42:7761–7769

    CAS  Google Scholar 

  24. Li Q, Liu J, Liu Y, Chou KC (2010) Comparative study on the controlled hydriding combustion synthesis and the microwave synthesis to prepare Mg2Ni from micro-particles. Int J Hydrogen Energy 35:3129–3135

    CAS  Google Scholar 

  25. Al Bacha S, Awad AS, El Asmar E, Tayeh T, Bobet JL, Nakhl M, Zakhour M (2019) Hydrogen generation via hydrolysis of ball milled WE43 magnesium waste. Int J Hydrogen Energy 44:17515–17524

    CAS  Google Scholar 

  26. Yang BC, Chai YJ, Yang FL, Zhang Q, Liu H, Wang N (2018) Hydrogen generation by aluminum-water reaction in acidic and alkaline media and its reaction dynamics. Int J Energy Res 42:1594–1602

    CAS  Google Scholar 

  27. Liu J, Wang H, Yuan Q, Song X (2018) A novel material of nanoporous magnesium for hydrogen generation with salt water. J Power Sources 395:8–15

    CAS  Google Scholar 

  28. Ouyang L, Ma M, Huang M, Duan R, Wang H, Sun L, Zhu M (2015) Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer. Energies 8:4237–4252

    CAS  Google Scholar 

  29. Oh SK, Kim MJ, Eom KS, Kyung JS, Kim DH, Cho EA, Kwon HS (2016) Design of Mg-Ni alloys for fast hydrogen generation from seawater and their application in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 41:5296–5303

    CAS  Google Scholar 

  30. Ma M, Yang L, Ouyang L, Shao H, Zhu M (2019) Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling. Energy 167:1205–1211

    CAS  Google Scholar 

  31. Li SL, Song JM, Uan JY (2019) Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H2 generation and the recycling of pure X metals from the reaction wastes. J Alloy Compd 772:489–498

    CAS  Google Scholar 

  32. Huang M, Ouyang L, Chen Z, Peng C, Zhu X, Zhu M (2017) Hydrogen production via hydrolysis of Mg-oxide composites. Int J Hydrogen Energy 42:22305–22311

    CAS  Google Scholar 

  33. Xiao F, Guo Y, Yang R, Li J (2019) Hydrogen generation from hydrolysis of activated magnesium/low-melting-point metals alloys. Int J Hydrogen Energy 44:1366–1373

    CAS  Google Scholar 

  34. Huang M, Ouyang L, Ye J, Liu J, Yao X, Wang H, Shao H, Zhu M (2017) Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J Mater Chem A 5:8566–8575

    CAS  Google Scholar 

  35. Huang M, Ouyang L, Liu J, Wang H, Shao H, Zhu M (2017) Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications. J Power Sources 365:273–281

    CAS  Google Scholar 

  36. Hou X, Wang Y, Hu R, Shi HC, Feng L, Suo GQ, Ye XH, Zhang L, Yang YL (2019) Catalytic effect of EG and MoS2 on hydrolysis hydrogen generation behavior of high-energy ball-milled Mg-10wt.%Ni alloys in NaCl solution-A powerful strategy for superior hydrogen generation performance. Int J Energy Res 43:8426–8438

    CAS  Google Scholar 

  37. Hou X, Hu R, Zhang T, Kou H, Li J (2016) Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3. J Power Sources 306:437–447

    CAS  Google Scholar 

  38. Hou X, Wang Y, Yang Y, Hu R, Yang G, Feng L, Suo G (2019) Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys. Energy 188:116081–116092

    CAS  Google Scholar 

  39. Grosjean MH, Zidoune M, Roue L, Huot JY (2006) Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int J Hydrogen Energy 31:109–119

    CAS  Google Scholar 

  40. Jiang J, Ouyang L, Wang H, Liu J, Shao H, Zhu M (2019) Controllable Hydrolysis Performance of MgLi Alloys and Their Hydrides. ChemPhysChem 20:1316–1324

    CAS  Google Scholar 

  41. Ouyang LZ, Xu YJ, Dong HW, Sun LX, Zhu M (2009) Production of hydrogen via hydrolysis of hydrides in Mg-La system. Int J Hydrogen Energy 34:9671–9676

    CAS  Google Scholar 

  42. Xu Y, Wu C, Chen Y, Huang Z, Luo L, Wu H, Liu P (2014) Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis. J Power Sources 261:7–13

    CAS  Google Scholar 

  43. Alasmar E, Awad AS, Hachem D, Tayeh T, Nakhl M, Zakhour M, Gaudin E, Bobet JL (2018) Hydrogen generation from Nd-Ni-Mg system by hydrolysis reaction. J Alloy Compd 740:52–60

    CAS  Google Scholar 

  44. Liu P, Wu H, Wu C, Chen Y, Xu Y, Wang X, Zhang Y (2015) Microstructure characteristics and hydrolysis mechanism of Mg-Ca alloy hydrides for hydrogen generation. Int J Hydrogen Energy 40:3806–3812

    CAS  Google Scholar 

  45. Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Hu P, Du H, Li S, Zhou X (2017) Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries. Advanced Energy Materials 7:1602055–1602065

    Google Scholar 

  46. Hou X, Hu R, Yang Y, Feng L, Suo G (2018) Modification based on internal refinement and external decoration: A powerful strategy for superior thermodynamics and hysteresis of Mg-Ni hydrogen energy storage alloys. J Alloy Compd 766:112–122

    CAS  Google Scholar 

  47. Huang MJ, Duan MR, Ouyang ZL, Wen JY, Wang H (2014) The effect of particle size on hydrolysis properties of Mg3La hydrides. Int J Hydrogen Energy. 39(25):13564–13568

    CAS  Google Scholar 

  48. Pang Y, Li Q (2016) A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int J Hydrogen Energy 41:18072–18087

    CAS  Google Scholar 

  49. Kantürk A, Bilge F, Pişkin CS (2015) Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2). Int J Hydrogen Energy 40:7483–7489

    Google Scholar 

  50. Oz C, Filiz BC, Figen AK (2017) The effect of vinegar-acetic acid solution on the hydrogen generation performance of mechanochemically modified Magnesium (Mg) granules. Energy 127:328–334

    CAS  Google Scholar 

  51. Hou X, Wang Y, Hou K, Yang L, Yang Y (2020) Outstanding hydrogen production properties of surface catalysts promoted Mg-Ni-Ce composites at room temperature in simulated seawater. J Mater Sci 9:14922–14937

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos.51704188, 51702199, 61705125 and 51802181), the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201809), Shaanxi Natural Science Foundation (Grant No.2019JQ-099), Research Starting Foundation from Shaanxi University of Science and Technology (Grant No.2016GBJ-04)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, K., Ye, X., Hou, X. et al. Rapid catalytic hydrolysis performance of Mg alloy enhanced by MoS2 auxiliary mass transfer. J Mater Sci 56, 4810–4829 (2021). https://doi.org/10.1007/s10853-020-05552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05552-z

Navigation