Skip to main content

Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains

Abstract

Nitrogen-rich transition metal nitrides are of great interests due to the unique physical and chemical properties. Here, we perform a detailed structural investigation of ReN8 in the pressure range of 0–200 GPa via particle swarm optimization algorithm and first-principles calculations. Interestingly, four ReN8 phases are firstly revealed to be stable within 200 GPa, N2 dimers are found to be preferred in T-ReN8 at pressure lower than 15.8 GPa and the infinite N chains become dominated in M-, T’- and M’-ReN8 at higher pressure up to 200 GPa. We find that the Young’s moduli of M- and T’-ReN8, about 850 GPa along [0.88 0 0.47] and [0 0 1] direction, are comparable to cubic BN, due to the presence of electronic accumulation in the N chains. Furthermore, M- and T’-ReN8 are found to be of high energy density of ~ 1.9 kJ/g (~ 11.0 kJ/cm3).

Graphical abstract

Ultra-incompressibility of ReN8 in special direction due to the high electronic accumulations in the polynitrogen chains.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Dawihl W (1972) Book review: transition metal carbides and nitrides Von L E Toth. Angew Chem, Int Ed Engl 84:960–960. https://doi.org/10.1002/anie.197209474

    Article  Google Scholar 

  2. 2

    Lévy F, Hones P, Schmid P, Sanjinés R, Diserens M, Wiemer C (1999) Electronic states and mechanical properties in transition metal nitrides. Surf Coat Tech 120:284–290. https://doi.org/10.1016/S0257-8972(99)00498-3

    Article  Google Scholar 

  3. 3

    Vepřek S (1999) The search for novel, superhard materials. J Vac Sci Technol A 17:2401–2420. https://doi.org/10.1116/1.581977

    Article  Google Scholar 

  4. 4

    Liu ZTY, Zhou X, Khare SV, Gall D (2014) Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation. J Phys Condens Mat 26:025404. https://doi.org/10.1088/0953-8984/26/2/025404

    CAS  Article  Google Scholar 

  5. 5

    Takei W, Shirane G, Frazer BC (1960) Magnetic structure of Mn4N. Phys Rev 119:122–126. https://doi.org/10.1103/PhysRev.119.122

    CAS  Article  Google Scholar 

  6. 6

    Sakuma A (1991) Self-consistent calculations for the electronic structures of iron nitrides, Fe3N, Fe4N and Fe16N2. J Magn Magn Mater 102:127–134. https://doi.org/10.1016/0304-8853(91)90277-H

    CAS  Article  Google Scholar 

  7. 7

    Leineweber A, Niewa R, Jacobs H, Kockelmann W (2000) The manganese nitrides η-Mn3N2 and θ-Mn6N5+x: nuclear and magnetic structures. J Mater Chem 10:2827–2834. https://doi.org/10.1039/B006969H

    CAS  Article  Google Scholar 

  8. 8

    Thakoor S, LeDuc H, Thakoor A, Lambe J, Khanna S (1986) Room temperature deposition of superconducting NbN for superconductor–insulator–superconductor junctions. J Vac Sci Technol A 4:528–531. https://doi.org/10.1116/1.573873

    CAS  Article  Google Scholar 

  9. 9

    Cao C, Groll N, Klug J, Becker N, Altin S, Proslier T, Zasadzinski J (2014) Tunneling spectroscopy of MoN and NbxTi1-xN thin films grown by atomic layer deposition. In: APS March Meeting Abstracts, pp Z52-007

  10. 10

    Kojima R, Enomoto H, Muhler M, Aika KI (2003) Cesium-promoted rhenium catalysts supported on alumina for ammonia synthesis. Appl Catal A-Gen 246:311–322. https://doi.org/10.1016/S0926-860X(03)00062-0

    CAS  Article  Google Scholar 

  11. 11

    Kojima R, Aika KI (2001) Rhenium containing binary catalysts for ammonia synthesis. Appl Catal A Gen 209:317–325. https://doi.org/10.1016/S0926-860X(00)00764-X

    CAS  Article  Google Scholar 

  12. 12

    Lei W, Liu D, Li X, Zhang J, Zhou Q, Hu J, Cui Q, Zou G (2007) High-pressure study of low-compressibility Ta2N. J Phys Condens Mat 19:425233. https://doi.org/10.1088/0953-8984/19/42/425233

    CAS  Article  Google Scholar 

  13. 13

    Friedrich A, Winkler B, Bayarjargal L, Morgenroth W, Juarez AEA, Milman V, Refson K, Kunz M, Chen K (2010) Novel rhenium nitrides. Phys Rev Lett 105:085504. https://doi.org/10.1103/PhysRevLett.105.085504

    CAS  Article  Google Scholar 

  14. 14

    Tehrani AM, Brgoch J (2017) Impact of vacancies on the mechanical properties of ultra-incompressible, hard rhenium subnitrides: Re2N and Re3N. Chem Mater 29:2542–2549. https://doi.org/10.1021/acs.chemmater.6b04408

    CAS  Article  Google Scholar 

  15. 15

    Haines J, Leger J, Bocquillon G (2001) Synthesis and design of super hard materials. Annu Rev Mater Res 31:1–23. https://doi.org/10.1146/annurev.matsci.31.1.1

    CAS  Article  Google Scholar 

  16. 16

    Salamat A, Hector AL, Kroll P, McMillan PF (2013) Nitrogen-rich transition metal nitrides. Coordin Chem Rev 257:2063–2072. https://doi.org/10.1016/j.ccr.2013.01.010

    CAS  Article  Google Scholar 

  17. 17

    Sun W, Holder A, Orvañanos B, Arca E, Zakutayev A, Lany S, Ceder G (2017) Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem Mater 29:6936–6946. https://doi.org/10.1021/acs.chemmater.7b02399

    CAS  Article  Google Scholar 

  18. 18

    Ding L, Shao P, Zhang F, Lu C, Huang X (2018) Prediction of molybdenum nitride from first-principle calculations: crystal structures, electronic properties, and hardness. J Phys Chem C 122:21039–21046. https://doi.org/10.1021/acs.jpcc.8b04779

    CAS  Article  Google Scholar 

  19. 19

    Lei L, Zhang L (2018) Recent advance in high-pressure solid-state metathesis reactions. Matter Radiat Extrem 3:95–103. https://doi.org/10.1016/j.mre.2017.12.003

    Article  Google Scholar 

  20. 20

    Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H, Hemley R (2004) Synthesis and characterization of a binary noble metal nitride. Nat Mater 3:294–297. https://doi.org/10.1038/nmat1115

    CAS  Article  Google Scholar 

  21. 21

    Young AF, Montoya JA, Sanloup C, Lazzeri M, Gregoryanz E, Scandolo S (2006) Interstitial dinitrogen makes PtN2 an insulating hard solid. Phys Rev B 73:153102. https://doi.org/10.1103/PhysRevB.73.153102

    CAS  Article  Google Scholar 

  22. 22

    Young AF, Sanloup C, Gregoryanz E, Scandolo S, Hemley RJ, Mao H (2006) Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys Rev Lett 96:155501. https://doi.org/10.1103/PhysRevLett.96.155501

    CAS  Article  Google Scholar 

  23. 23

    Crowhurst JC, Goncharov AF, Sadigh B, Evans CL, Morrall PG, Ferreira JL, Nelson A (2006) Synthesis and characterization of the nitrides of platinum and iridium. Science 311:1275–1278. https://doi.org/10.1126/science.1121813

    CAS  Article  Google Scholar 

  24. 24

    Kawamura F, Yusa H, Taniguchi T (2012) Synthesis of rhenium nitride crystals with MoS2 structure. Appl Phys Lett 100:251910. https://doi.org/10.1063/1.4729586

    CAS  Article  Google Scholar 

  25. 25

    Zhao Z, Bao K, Li D, Duan D, Tian F, Jin X, Chen C, Huang X, Liu B, Cui T (2014) Nitrogen concentration driving the hardness of rhenium nitrides. Sci Rep 4:4797. https://doi.org/10.1038/srep04797

    Article  Google Scholar 

  26. 26

    Olah GA, Surya Prakash G, Rasul G (2001) N62+ and N42+ dications and their N12 and N10 azido derivatives: DFT/GIAO-MP2 theoretical studies. J Am Chem Soc 123:3308–3310. https://doi.org/10.1021/ja002253y

    CAS  Article  Google Scholar 

  27. 27

    Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q, Sun J (2019) Predictions on high-power trivalent metal pentazolate salts. J Phys Chem Lett 10:6166–6173. https://doi.org/10.1021/acs.jpclett.9b02383

    CAS  Article  Google Scholar 

  28. 28

    Wei Q, Zhao C, Zhang M, Yan H, Wei B (2019) High-pressure phases and pressure-induced phase transition of MoN6 and ReN6. Phys Lett A 383:2429–2435. https://doi.org/10.1016/j.physleta.2019.04.06

    CAS  Article  Google Scholar 

  29. 29

    Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H, Xing D (2018) A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci Bull 63:817–824. https://doi.org/10.1016/j.scib.2018.05.027

    CAS  Article  Google Scholar 

  30. 30

    Wu L, Tian R, Wan B, Liu H, Gong N, Chen P, Shen T, Yao Y, Gou H, Gao F (2018) Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem Mater 30:8476–8485. https://doi.org/10.1021/acs.chemmater.8b02972

    CAS  Article  Google Scholar 

  31. 31

    Zhang J, Oganov AR, Li X, Niu H (2017) Pressure-stabilized hafnium nitrides and their properties. Phys Rev B 95:020103. https://doi.org/10.1103/PhysRevB.95.020103

    Article  Google Scholar 

  32. 32

    Bykov M, Bykova E, Koemets E, Fedotenko T, Aprilis G, Glazyrin K, Liermann HP, Ponomareva AV, Tidholm J, Tasnádi F (2018) High-pressure synthesis of a nitrogen-rich inclusion compound ReN8⋅xN2 with conjugated polymeric nitrogen chains. Angewe Chem Int Edit 57:9048–9053. https://doi.org/10.1002/anie.201805152

    CAS  Article  Google Scholar 

  33. 33

    Bykov M, Chariton S, Bykova E, Khandarkhaeva S, Fedotenko T (2020) High-pressure synthesis of metal-inorganic frameworks Hf4N20·N2,WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers. Angew Chem Int Ed 59:10321–10326. https://doi.org/10.1002/anie.202005697

    CAS  Article  Google Scholar 

  34. 34

    Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116. https://doi.org/10.1103/PhysRevB.82.094116

    CAS  Article  Google Scholar 

  35. 35

    Wang Y, Lv J, Zhu L, Ma Y (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183:2063–2070. https://doi.org/10.1016/j.cpc.2012.05.008

    CAS  Article  Google Scholar 

  36. 36

    Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704. https://doi.org/10.1063/1.2210932

    CAS  Article  Google Scholar 

  37. 37

    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/physrevb.54.11169

    CAS  Article  Google Scholar 

  38. 38

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    CAS  Article  Google Scholar 

  39. 39

    Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  40. 40

    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106. https://doi.org/10.1103/PhysRevB.78.134106

    CAS  Article  Google Scholar 

  41. 41

    Parlinski K, Li Z, Kawazoe Y (1997) First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 78:4063–4066. https://doi.org/10.1103/PhysRevLett.78.4063

    CAS  Article  Google Scholar 

  42. 42

    Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658. https://doi.org/10.1107/S0021889808012016

    CAS  Article  Google Scholar 

  43. 43

    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349. https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  44. 44

    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    CAS  Article  Google Scholar 

  45. 45

    Dronskowski R, Blöchl PE (1993) Crystal orbital hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97:8617–8624. https://doi.org/10.1021/j100135a014

    CAS  Article  Google Scholar 

  46. 46

    Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2016) LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 37:1030–1035. https://doi.org/10.1002/jcc.24300

    CAS  Article  Google Scholar 

  47. 47

    Wang H, Li Q, Li Y, Xu Y, Cui T, Oganov AR, Ma Y (2009) Ultra-incompressible phases of tungsten dinitride predicted from first principles. Phys Rev B 79:132109. https://doi.org/10.1103/PhysRevB.79.132109

    CAS  Article  Google Scholar 

  48. 48

    Du X, Wang Y, Lo V (2010) Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations. Phys Lett A 374:2569–2574. https://doi.org/10.1016/j.physleta.2010.04.020

    CAS  Article  Google Scholar 

  49. 49

    Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford. https://doi.org/10.1119/1.1934059

    Book  Google Scholar 

  50. 50

    Wang Y, Yao T, Yao J, Zhang J, Gou H (2013) Does the Real ReN2 have the MoS2 Structure? Phys Chem Chem Phys 15:183–187. https://doi.org/10.1039/c2cp43010j

    CAS  Article  Google Scholar 

  51. 51

    Bykov M, Chariton S, Fei H, Fedotenko T, Aprilis G, Ponomareva AV, Tasnádi F, Abrikosov IA, Merle B, Feldner P (2019) High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions. Nat Commun 10:1–8. https://doi.org/10.13140/RG.2.2.31484.59525

    CAS  Article  Google Scholar 

  52. 52

    Pugh S, Edinburgh MDP (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Dublin Philos Mag J Sci 45:823–843. https://doi.org/10.1080/14786440808520496

    CAS  Article  Google Scholar 

  53. 53

    Niu H, Niu S, Oganov AR (2019) Simple and accurate model of fracture toughness of solids. J Appl Phys 125:065105. https://doi.org/10.1063/1.5066311

    CAS  Article  Google Scholar 

  54. 54

    Mazhnik E, Oganov AR (2019) A model of hardness and fracture toughness of solids. J Appl Phys 126:125109. https://doi.org/10.1063/1.5113622

    CAS  Article  Google Scholar 

  55. 55

    Martirosyan KS (2011) Nanoenergetic gas-generators: principles and applications. J Mater Chem 21:9400. https://doi.org/10.1039/C1JM11300C

    CAS  Article  Google Scholar 

Download references

Acknowledgements

L. Wu thanks the Foundation of Education Department of Hebei Province under Grant No. ZD2020103. The numerical calculations in this paper have been partially done on the supercomputing system in the High Performance Computing Center of Yanshan University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lailei Wu, Jie Sun or Huiyang Gou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Gregory Rutledge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2592 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhou, P., Li, Y. et al. Ultra-incompressibility and high energy density of ReN8 with infinite nitrogen chains. J Mater Sci 56, 3814–3826 (2021). https://doi.org/10.1007/s10853-020-05512-7

Download citation