Skip to main content

Continuous high-pressure torsion of pure Al and Al-2 wt% Fe alloy using multi-wires

Abstract

The process of high-pressure torsion (HPT) is applied for grain refinement in a wire form of pure Al and an Al-2% Fe alloy. An earlier version of the continuous HPT (CHPT) was further developed in this study, so that two wires were processed simultaneously. The two wires were placed symmetrically along a circumferential direction so that the pressure was equally applied on the wires to allow a stable processing. Guiding holes were made at both the inlet and outlet sides of the grooves on the upper anvils so that no interference of the two wires occurs. As in the earlier version, the surface roughness of the upper grooves and lower grooves were made different. Thus, this difference causes a continuous material flow when the lower anvil is rotated with respect to the upper anvil due to the occurrence of more slippage with the upper anvil. The modified CHPT process was then performed using the upsized anvils having two grooves with a half circular cross section on the upper and lower anvils with 100-mm-outer and 94-mm-inner diameters. The grain size was reduced to ~ 1 μm for pure Al and ~ 400 nm for the Al-2% Fe alloy after rotation by a quarter turn. The tensile strength of 280 MPa was achieved in the Al-2% Fe alloy, and an equivalent strain of ~ 25 was introduced through this CHPT process. It is suggested that CHPT process with multi numbers of wires is feasible when the anvil diameter is enlarged.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    CAS  Article  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39. https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002

    CAS  Article  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    CAS  Article  Google Scholar 

  5. Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. Manuf Technol 57:716–735. https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  6. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817. https://doi.org/10.1016/j.actamat.2012.10.038

    CAS  Article  Google Scholar 

  7. Bachmaier A, Pippan R (2013) Generation of metallic nanocomposites by severe plastic deformation. Int Mater Rev 58:41–62. https://doi.org/10.1179/1743280412Y.0000000003

    CAS  Article  Google Scholar 

  8. Bridgman PW (1935) Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev 48:825–847. https://doi.org/10.1103/PhysRev.48.825

    CAS  Article  Google Scholar 

  9. Fujioka T, Horita Z (2009) Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater Trans 50:930–933. https://doi.org/10.2320/matertrans.MRP2008445

    CAS  Article  Google Scholar 

  10. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2016a) Fundamentals of superior properties in bulk NanoSPD materials. Mater Res Lett 4:1–21. https://doi.org/10.1080/21663831.2015.1060543

    CAS  Article  Google Scholar 

  11. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2016b) Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68:1216–1226. https://doi.org/10.1007/s11837-016-1820-6

    CAS  Article  Google Scholar 

  12. Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352. https://doi.org/10.1016/j.msea.2015.11.074

    CAS  Article  Google Scholar 

  13. Razavi-Khosroshah H, Fuji M (2019) Development of metal oxide high-pressure phases for photocatalytic properties by severe plastic deformation. Mater Trans 60:1203–1208. https://doi.org/10.2320/matertrans.MF201916

    Article  Google Scholar 

  14. Ikoma Y (2019) Severe plastic deformation of semiconductor materials using high-pressure torsion. Mater Trans 60:1168–1176. https://doi.org/10.2320/matertrans.MF201907

    CAS  Article  Google Scholar 

  15. Han JK, Jang JI, Langdon TG, Kawasaki M (2019) Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion. Mater Trans 60:1131–1138. https://doi.org/10.2320/matertrans.MF201908

    CAS  Article  Google Scholar 

  16. Edalati K (2019) Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process. Mater Trans 60:1221–1229. https://doi.org/10.2320/matertrans.MF201914

    CAS  Article  Google Scholar 

  17. Bachmaier A, Pippan R (2019) High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties. Mater Trans 60:1256–1269. https://doi.org/10.2320/matertrans.MF201930

    CAS  Article  Google Scholar 

  18. Edalati K, Akiba E, Horita Z (2018) High-pressure torsion for new hydrogen storage materials. Sci Technol Adv Mater 19:185–193. https://doi.org/10.1080/14686996.2018.1435131

    CAS  Article  Google Scholar 

  19. Masuda T, Horita Z (2019) Grain refinement of AZ31 and AZ61 Mg alloys through room temperature processing by UP-scaled high-pressure torsion. Mater Trans 60:1104–1110. https://doi.org/10.2320/matertrans.M2018308

    CAS  Article  Google Scholar 

  20. Hohenwarter A, Rockenschaub M, Pippan R (2017) Large scale high-pressure torsion. In: Edalati K, Ikoma Y, Horita Z (eds) Procedings of international workshop on giant straining process for advanced materials (GSAM2017). IRC-GSAM Kyushu University, pp 74–75

  21. Raab GJ, Valiev RZ, Lowe TC, Zhu YT (2004) Continuous processing of ultrafine grained Al by ECAP-Conform. Mater Sci Eng A 382:30–34. https://doi.org/10.1016/j.msea.2004.04.021

    CAS  Article  Google Scholar 

  22. Lee JC, Seok HK, Han JH, Chung YH (2001) Controlling the textures of the metal strips via the continuous confined strip shearing(C2S2) process. Mater Res Bull 36:997–1004. https://doi.org/10.1016/S0025-5408(01)00557-8

    CAS  Article  Google Scholar 

  23. Saito Y, Utsunomiya H, Suzuki H, Sakai T (2000) Improvement in the r-value of aluminum strip by a continuous shear deformation process. Scr Mater 42:1139–1144. https://doi.org/10.1016/S1359-6462(00)00349-3

    CAS  Article  Google Scholar 

  24. Edalati K, Horita Z (2010) Processing aluminum and aluminum alloys by continuous high-pressure torsion. In: Kumai S, Umezawa O, Takayama Y, Tsuchida T, Sato T (eds) Proceedings of the 12th International Conference on Aluminium Alloys (ICAA12). The Japan Institute of Light Metals, pp 1173–1178

  25. Edalati K, Lee S, Horita Z (2012) Continuous high-pressure torsion using wires. J Mater Sci 47:473–478. https://doi.org/10.1007/s10853-011-5822-z

    CAS  Article  Google Scholar 

  26. Edalati K, Horita Z (2012) Processing sheets and wires by continuous high-pressure torsion. Rev Adv Mater Sci 31:5–11

    CAS  Google Scholar 

  27. Edalati K, Horita Z (2010) Continuous high-pressure torsion. J Mater Sci 45:4578–4582. https://doi.org/10.1007/s10853-010-4381-z

    CAS  Article  Google Scholar 

  28. Shigeno E, Komatsu T, Sumikawa K, Masuda T, Takizawa Y, Yumoto M, Otagiri Y, Horita Z (2018) Combination of high-pressure torsion with incremental feeding for upsizing sample. Mater Trans 59:1009–1012. https://doi.org/10.2320/matertrans.M2018039

    CAS  Article  Google Scholar 

  29. Hohenwater A, Pippan R (2018) Introduction of planar high pressure torsion (P-HPT) for fabrication of nanostructured sheets. Adv Eng Mater 20(1–7):1800050. https://doi.org/10.1002/adem.201800050

  30. Takizawa Y, Watanabe K, Kajita T, Sumikawa K, Masuda T, Yumoto M, Otagiri Y, Horita Z (2018) Incremental feeding high-pressure sliding for achieving large area of severe plastic deformation. J Jpn Inst Met Mater 82:25–31. https://doi.org/10.2320/jinstmet.J2017038

    CAS  Article  Google Scholar 

  31. Takizawa Y, Sumikawa K, Watanabe K, Yumoto M, Kanai Y, Otagiri Y, Horita Z (2018) Incremental feeding high-pressure sliding for grain refinement of large-scale sheets: application to inconel 718. Metall Mater Trans A 49:1830–1840. https://doi.org/10.1007/s11661-018-4534-2

    CAS  Article  Google Scholar 

  32. Faraji G, Torabzadeh H (2019) An overview on the continuous severe plastic deformation methods. Mater Trans 60:1316–1330. https://doi.org/10.2320/matertrans.MF201905

    CAS  Article  Google Scholar 

  33. Horita Z, Tang Y, Masuda T, Takizawa Y (2020) Severe plastic deformation under high pressure: upsizing sample dimensions. Mater Trans 61:1177–1190. https://doi.org/10.2320/matertrans.MT-M2020074

    CAS  Article  Google Scholar 

  34. Cubero-sesin JM, In H, Arita M, Iwaoka H, Horita Z (2014) High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci 49:6550–6557. https://doi.org/10.1007/s10853-014-8240-1

    CAS  Article  Google Scholar 

  35. Cubero-Sesin JM, Arita M, Horita Z (2015) High strength and electrical conductivity of Al-Fe alloys produced by synergistic combination of high-pressure torsion and aging. Adv Eng Mater 17:1792–1803. https://doi.org/10.1002/adem.201500103

    CAS  Article  Google Scholar 

  36. Nakano H, Yamaguchi H, Yamada Y, Oue S, Son I, Horita Z, Koga H (2013) Effects of high-pressure torsion on the pitting corrosion resistance of Aluminum-Iron alloys. Mater Trans 54:1642–1649. https://doi.org/10.2320/matertrans.MH201301

    CAS  Article  Google Scholar 

  37. Cubero-Sesin JM, Horita Z (2012a) Mechanical properties and microstructures of Al-Fe alloys processed by high-pressure torsion. Metall Mater Trans A 43:5182–5192. https://doi.org/10.1007/s11661-012-1341-z

    CAS  Article  Google Scholar 

  38. Cubero-Sesin JM, Horita Z (2012b) Strengthening via microstructure refinement in bulk Al-4 mass% Fe alloy using high-pressure torsion. Mater Trans 53:46–55. https://doi.org/10.2320/matertrans.MD201127

    CAS  Article  Google Scholar 

  39. Cubero-Sesin JM, Horita Z (2013) Strengthening of Al through addition of Fe and by processing with high-pressure torsion. J Mater Sci 48:4713–4722. https://doi.org/10.1007/s10853-012-6935-8

    CAS  Article  Google Scholar 

  40. Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A 503:32–36. https://doi.org/10.1016/j.msea.2008.03.055

    CAS  Article  Google Scholar 

  41. Terhune SD, Swisher DL, Oishi K, Horita Z, Langdon TG, Mcnelley TR (2002) An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall Mater Trans A 33:2173–2184. https://doi.org/10.1007/s11661-002-0049-x

    Article  Google Scholar 

  42. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater 47:893–899. https://doi.org/10.1016/S1359-6462(02)00282-8

    CAS  Article  Google Scholar 

  43. Iwaoka H, Horita Z (2015) High-pressure torsion of thick Cu and Al-Mg-Sc ring samples. J Mater Sci 50:4888–4897. https://doi.org/10.1007/s10853-015-9033-x

    CAS  Article  Google Scholar 

  44. Masuda T, Fujimitsu K, Takizawa Y, Horita Z (2015) High-pressure sliding using rod samples for grain refinement and superplasticity in Al and Mg alloys. Lett Mater 5:258–263. https://doi.org/10.22226/2410-3535-2015-3-258-263

    Article  Google Scholar 

  45. Tang Y, Sumikawa K, Takizawa Y, Yumoto M, Otagiri Y, Horita Z (2019) Multi-pass high-pressure sliding (MP-HPS) for grain refinement and superplasticity in metallic round rods. Mater Sci Eng A 748:108–118. https://doi.org/10.1016/j.msea.2019.01.071

    CAS  Article  Google Scholar 

  46. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  47. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (TM) would like to acknowledge the Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (JSPS) (No. JP16J07050, JP19J01767) and the Aluminium Research Grant Program of Japan Aluminium Association. This work was supported in part by the Light Metals Educational Foundation of Japan, and in part by Grant-in-Aids for Scientific Research (S), (A) and Young Scientists from the MEXT, Japan (No. JP26220909, No. JP19H00830 and No. JP19K15324). HPT was carried out in the International Research Center on Giant Straining for Advanced Materials (IRC-GSAM) at Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Masuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Nathan Mara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Hirosawa, S. & Horita, Z. Continuous high-pressure torsion of pure Al and Al-2 wt% Fe alloy using multi-wires. J Mater Sci 56, 8679–8688 (2021). https://doi.org/10.1007/s10853-020-05484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05484-8